
Parallelized Hybrid TGRAPPA Reconstruction

for Real-Time Interactive MRI

Haris Saybasili1,2, Peter Kellman1, J. Andrew Derbyshire1, Elliot R. McVeigh3,
and Michael A. Guttman1

1 NHLBI, National Institutes of Health, DHHS, Bethesda, MD, USA
saybasilih@mail.nih.gov

2 Bogazici University, Biomedical Engineering Institute, Istanbul, Turkey
3 Johns Hopkins University, Dept. of Biomedical Engineering, Baltimore, MD, USA

Abstract. Real-time parallel MRI reconstruction was demonstrated us-
ing a hybrid implementation of the TGRAPPA algorithm. The GRAPPA
coefficients were calculated in k-space and applied in the image domain
after appropriate transformation, thereby achieving improved speed and
excellent image quality. Adaptive B1-weighted combining of the per coil
images permitted use of pre-calculated composite image domain weights
providing significant decrease in computation. The weight calculation
was decoupled from the real-time image reconstruction as a parallel
processing thread which was updated in an adaptive manner to speed
convergence in the event of interactive change in scan plane. The com-
putation was parallelized and implemented on a general purpose multi-
core architecture. Reconstruction speeds of 65-70 frames per second were
achieved with a matrix of 192x144 with 15 coils.

1 Introduction

Parallel MRI (pMRI) methods aim to increase the imaging speed without de-
grading temporal resolution, by the use of multiple receiver coils and partial
k-space coverage. Each of these coils is placed at different locations on the pa-
tient, thus sensing the MR signal with different spatial sensitivities. Therefore,
each MRI receiver acquires data corresponding to an aliased image, modulated
by its unique spatial sensitivity pattern. Knowledge of the sensitivity informa-
tion can be used to correct the aliasing, or equivalently, to synthesize data for the
skipped spatial encoding steps. Several pMRI methods have been proposed in-
cluding the well-known image domain SENSE [1] and k-space domain GRAPPA
[2] algorithms.

The proposed approach uses the GRAPPA algorithm for k-space weight cal-
culation since this method is tolerant of prefolding (or wrap) within the user
defined FOV, which may be advantageous when small FOV is desired. Autocal-
ibration was performed using a time interleaved acquisition scheme as done in
TSENSE [3] by combining R (acceleration factor) consecutive frames to form
a low temporal resolution full k-space dataset for weight calculation as done in
TGRAPPA [4].
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Although TSENSE has been deployed in real time interventional applications
for several years [5], to the best of our knowledge TGRAPPA has not yet been
demonstrated with real-time, low latency image reconstruction. The TGRAPPA
algorithm uses convolution-like operations to estimate the skipped k-space data,
requiring significantly greater computation than TSENSE. The calculation of
weights as well as the application of weights are both performed in k-space.
However, the convolution operation in the k-space domain is equivalent to sim-
ple multiplication in the image-domain. Thus, it is possible to perform a hybrid
k-space and image-domain reconstruction [6], which will greatly reduce com-
putation and remove dependency of reconstruction speed on kernel size and
acceleration rate.

(T)GRAPPA reconstruction is performed on a per coil basis and combined us-
ing root sum of squares in order to avoid dephasing. In this work, we use adaptive
B1-weighted combining [7] primarily for computational speed. In this approach,
a composite set of unmixing coefficients are calculated that linearly combines
the per coil coefficients with an estimated sensitivity map. These pre-calculated
weights are applied to the aliased images to reconstruct a single unaliased image
(as in SENSE) resulting in a significant computational reduction.

In this work, we demonstrate a parallelized hybrid TGRAPPA implementation
with simplified computation and continuously updated auto-calibration for real
time interactive MRI.

2 Method

In (T)GRAPPA, the missing data for a particular coil is estimated from all the
acquired data from all the coils. Suppose Nc is the number of receiver coils and R
is the acceleration rate. For each acquired k-space point from each coil (c, kx, ky)
it is necessary to synthesize (R − 1) sample estimates to completely fill out the
acquisition matrix. Blocks of [Y ×X ] neighboring acquired samples from all the
receiver coils are used to obtain estimates of these missing samples for a given
coil. The choice of block size affects the compromise between image quality and
reconstruction speed. Figure 1 shows examples of [4 × 5] and [2 × 5] blocks at
one k-space location with the missing k-space samples for R = 3.

Consider a particular block for a particular coil ck. The R−1 unknown points
in the block are estimated as a linear combination of the known samples in the
corresponding blocks from all the receiver coils. For this, each missing sample
in the block requires (XY Nc) weighting coefficients. Let S(c, i, j) be the (i, j)
element of the acquired data in the corresponding block of data from coil c (i.e.
the square samples in Fig 1). Let Wck,p(c, i, j) be the set of GRAPPA weight
coefficients used to weight the samples S(c, i, j) in order to synthesize Tck,p, the
pth missing sample of the target block ck (i.e. the stars in Fig 1). This relation
can be expressed as

Nc∑

c=1

X∑

i=1

Y∑

j=1

S(c, i, j)Wck,p(c, i, j) = Tck,p (1)
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Fig. 1. a. R = 3, block of size 4 × 5 (4 lines, 5 points per line). b. R = 3, block of size
2 × 5 (2 lines, 5 points per line).

The weighting coefficients Wck,p(c, i, j) are obtained from the fully sampled
auto-calibration data by solving the equation Eq. 1 using least squares estimation
of the overdetermined system formed by considering all the blocks in the central
parts of k-space. The precision of the weight-sets increases by increasing the
number of blocks to use in the estimation.

Calculation of the weight-sets is computationally demanding, but needs only
to be performed infrequently. The resulting weights may be re-used for multiple
frames of reconstruction until the image encoding process changes (e.g. due to
a change of scan plane or movement of the receiver coil array).

Whileestimationofthemissingk-spacedata fromacquireddatausingEq.1is less
demanding thanthecalculationof theweight-sets, itmustbeperformed inreal-time
for each image to be reconstructed, and hence determines the effective reconstruc-
tion speed. Furthermore, this calculation is significantly more computationally in-
tensive than corresponding calculations for image-based parallel imaging methods
(e.g. (T)SENSE) because it employs a convolution type process at each sample, as
opposed to a pixel-by-pixel multiplication. Furthermore, operating in the k-space
domain requires processing of data from all receiver channels, thereby increasing
demands on computation and data management. For TGRAPPA, the speed of re-
construction depends on the size of the acquisition matrix; the number of receiver
coils Nc; the acceleration rate, R; and the block size, [Y × X ].

We note that Eq. 1 is a convolution-type operation performed in the fre-
quency domain which can be eliminated in favor of a direct multiplication if
the TGRAPPA weight-sets are transformed into the image-domain. Thus, it is
possible to reduce the dependency of the reconstruction speed to the size of the
acquisition matrix and then number of receiver coils Nc, dramatically improving
the reconstruction speed when high acceleration rates and/or large block sizes
are used.
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TGRAPPA Reconstruction in the Image Domain
For image-domain based TGRAPPA reconstruction, the weight-sets must be
transformed into the image-domain. This is achieved by combining the p = [1 :
R−1] weight-sets wck,p(c, ·, ·) (which relate the acquired data in coil c to the miss-
ing data from coil ck) to yield Nc k-space convolution kernels W set

ckc(kx, ky) for
each coil, ck. The centre point of these kernels must be set to δckc, corresponding
to preserving the acquired samples for the coil ck. The kernel is then zero-filled
to the same matrix size as the actual images and inverse Fourier transformed
into the image-domain.

wimg
ckc = F−1

(
W set

ckc

)
(2)

The composite unmixing coefficient ucomp
c of coil c is obtained by pixel-by-

pixel multiplying each wimg
ckc by complex conjugate of B1-map estimates b1ck

,
calculated from the temporal average of data from each coil c and summing,
thus:

ucomp
c =

Nc∑

ck=1

wimg
ckc · b1∗ck

(3)

where · denotes pixel-by-pixel multiplication operator.
For the reconstruction, the under-sampled k-space data, Kc(kx, ky) from each

coil, c = [1 : Nc], is transformed into image-domain, yielding aliased images
Ialiased
c :

Ialiased
c = F−1 (Kc) (4)

Final image is obtained by

Ifinal =
Nc∑

c=1

Ialiased
c · ucomp

c (5)

which is a phased array combiner as in SENSE unmixing. The resulting recon-
struction speed does not depend on either R or the block size, and because the
convolution operation is replaced by a pixel-by-pixel multiplication, computa-
tion is reduced. Multi-coil root sum-of-squares magnitude operation is replaced
by a simple linear combination.

Implementation
The image reconstruction algorithms are implemented in C/C++ for high perfor-
mance. Weight-set calculation and image reconstruction were computed in paral-
lel using 8 dual-core AMD Opteron 8220 processor (2.8GHz) on Linux-2.6.16.46-
0.12-smp. Parallelization of the reconstruction was achieved using Pthreads
(http://pasc.org), and parallelization in the weight-set calculation was real-
ized by OpenMP (http://openmp.org). The code compiled on GCC
(http://gcc.gnu.org) version 4.2.2. The OpenGL (http://opengl.org) li-
brary used for displaying reconstructed images. Matrix inversions, used in the
least-squares calculation of the weight-set coefficients from the auto-calibration
data, was calculated using the ATLAS library (http://math-atlas.

http://pasc.org
http://openmp.org
http://gcc.gnu.org
http://opengl.org
http://math-atlas.
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sourceforge.net). The FFTW library (http://fftw.org) was used for Fast
Fourier Transformations.

Weight-set calculation, the most time consuming step of the whole process, is
performed asynchronously to the image reconstruction. During this calculation,
image reconstruction with the current weight set updates the auto-calibration
data using one thread per coil. At initialization, and later when there is a scan-
plane change, new weight-sets must be calculated as quickly as possible in order
to produce useful images as soon as possible. At that point, the calculation
is multithreaded (number of threads = number of CPUs) and a smaller block
size is used. This permits images to be reconstructed almost immediately, but
with reduced quality. The block size is subsequently increased with each new
weight-set calculation to improve the image quality, while the number of threads
is decreased to devote more CPU resources to image reconstruction. The use
of OpenMP facilitates this strategy since it allows thread count to be modified
dynamically.

3 Results

Several real-time heart images were acquired using a Siemens Magnetom Espree
1.5T (Siemens Medical Solutions, Erlangen, Germany). The sequence was SSFP
[8] with TR=3.1, flip angle=45 degrees, bandwith=800Hz/pixel with an acqui-
sition matrix of 192x144. S5FP [9] was used for suppression of fat and flow
artifacts. 15 receiver coils were used; 6 elements on the chest and 9 under the
spine. The proposed parallel imaging technique, hybrid TGRAPPA, was em-
ployed with acceleration factors of R = 2, R = 3, and R = 4.

Performance
The performance results for the reconstruction and first time weight-set calcu-
lation are given in Table 1 and 2 for both conventional and hybrid TGRAPPA
implementation for acceleration rates of R = 2,3,4, using block sizes of [2 × 1]
(used only for R = 2 and R = 3: not effective when R > 3), [2 × 3], [2 × 5],
[2 × 7], [4 × 3] and [4 × 5]. For both conventional and hybrid TGRAPPA im-
plementations, 60 auto-calibration lines were used for weight-set calculation.
Hybrid TGRAPPA weight-set calculation results includes the transformation of
the k-space weight-sets into image-domain and the calculation of the composite
unmixing coefficients.

Images
Block sizes of [2×X ] are preferred in our application as these are computationally
less demanding than block sizes of [4 × X ] and provide nearly on par image
quality, which can be seen in Fig. 2 that compares rate 4 image with block sizes of
[4×5] and [2×7]. Figure 3 represents the reconstructed images for R = 3 for block
sizes of [2 × 1] and [2 × 5] after hybrid TGRAPPA reconstruction. The smaller
sized block gives fast weight-set calculation with reasonable image quality, while
bigger sized block gives slow weight-set calculation but superior image quality
for a given acceleration rate. Smaller block size causes more artifacts, e.g. see

sourceforge.net
http://fftw.org
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Table 1. Image reconstruction times in seconds for conventional (conv.) and hybrid
(hyb.) TGRAPPA for different R values and block sizes of [2×1], [2×3], [2×5], [2×7],
[4 × 3] and [4 × 5] (acquisition matrix: 192 × 144, Nc = 15)

R
[2 × 1] [2 × 3] [2 × 5] [2 × 7] [4 × 3] [4 × 5]

conv. hyb. conv. hyb. conv. hyb. conv. hyb. conv. hyb. conv. hyb.

2 0.180 0.015 0.330 0.015 0.540 0.015 0.730 0.015 0.650 0.015 1.050 0.015
3 0.220 0.015 0.430 0.015 0.720 0.015 0.980 0.015 0.840 0.015 1.350 0.015
4 - - 0.500 0.015 0.810 0.015 1.100 0.015 0.950 0.015 1.550 0.015

Table 2. First time weight-set calculation times in seconds for conventional (conv.)
and hybrid (hyb.) TGRAPPA for different R values and block sizes of [2 × 1], [2 × 3],
[2 × 5], [2 × 7], [4 × 3] and [4 × 5]. (acquisition matrix: 192 × 144, Nc = 15).

R
[2 × 1] [2 × 3] [2 × 5] [2 × 7] [4 × 3] [4 × 5]

conv. hyb. conv. hyb. conv. hyb. conv. hyb. conv. hyb. conv. hyb.

2 0.080 0.400 0.270 0.580 0.650 0.970 1.180 1.500 0.770 1.090 2.100 2.420
3 0.090 0.410 0.290 0.620 0.700 1.020 1.220 1.530 0.820 1.140 2.120 2.440
4 - - 0.320 0.650 0.750 1.070 1.270 1.610 0.870 1.190 2.160 2.480

the background artifacts and heart muscle wall region marked by white square
in Fig. 3.a. Note that in these figures, image brightness levels are increased to
make reconstruction artifacts more visible.

4 Discussion

Image domain hybrid TGRAPPA reconstruction outperforms conventional k-
space TGRAPPA reconstruction as can be seen in Table 1. Additionally, image-
domain reconstruction speed remains unaffected by increased acceleration rates
and increased block sizes. Thus, the trade-off between reconstruction speed and
image quality is eliminated. However, the weight-set calculation slows down due
to the additional steps required to transform the k-space weight-sets into the
image-domain and to the B1-combining. This slow-down depends on the number
of acquisition coils and on image resolution. In our test dataset, the time loss
due to the additional transformation was measured as 0.32 seconds, which we
considered to be reasonable for our application.

Image domain hybrid TGRAPPA reconstruction image quality is equivalent
to conventional TGRAPPA. Additionally, acceleration rate and block size in-
dependent reconstruction scheme provide better image quality with faster re-
construction rates. R = 4 images in Fig. 2 are reconstructed in 0.015 seconds
(65-70 frames/sec) which was not previously possible to achieve using conven-
tional TGRAPPA reconstruction on our reconstruction system.

A parallelized hybrid TGRAPPA implementation for real-time applications
was developed and demonstrated. For improved reconstruction speeds, k-space
domain convolution type operations are instead converted to pixel-wise
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Fig. 2. Image domain hybrid TGRAPPA reconstructed image for R = 4 (acquisition
matrix: 192 × 144, Nc = 15). a. Block size of [4 × 5] b. Block size of [2 × 7].

Fig. 3. Image domain hybrid TGRAPPA reconstructed images for R = 3 (acquisition
matrix: 192 × 144, Nc = 15). Image brightness levels are modified for easily viewing
the artifacts. a. Block size of [2 × 1]. Artifact in the heart muscle wall is indicated by
the dotted white square. Background artifacts can be observed. b. Block size of [2×5].

multiplication in the image domain. This improvement essentially provides a
constant reconstruction speed for a given acquisition matrix and number of ac-
quisition coils independent of the acceleration rate and block size. Our approach
adds additional steps to the calculation of the weight-sets, however the weight
sets are calculated in the background, asynchronous to image reconstruction.
Also, by dynamically changing the block size and number of threads to use for
weight-set calculation, we can respond to changes in slice plane by first producing



170 H. Saybasili et al.

a lower quality image, then increasing quality for later frames. The weight cal-
culation for the proposed hybrid method was only 20% slower than conventional
(T)GRAPPA, however, the reconstruction speed was up to 100x faster. This
method allows use of the TGRAPPA algorithm for interactive real-time MRI.
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