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SUMMARY

Cells exhibit a biphasic migration-velocity re-
sponse to increasing adhesion strength, with
fast migration occurring at intermediate extra-
cellular matrix (ECM) concentration and slow
migration occurring at low and high ECM con-
centration. A simple mechanical model has
been proposed to explain this observation, in
which too little adhesion does not provide suffi-
cient traction whereas too much adhesion ren-
ders cells immobile. Here we characterize a phe-
notype for rapid cell migration, which in contrast
to the previous model reveals a complex inter-
dependence of subcellular systems that medi-
ates optimal cell migration in response to in-
creasing adhesion strength. The organization
and activity of actin, myosin II, and focal adhe-
sions (FAs) are spatially and temporally highly
variable and do not exhibit a simple correlation
with optimal motility rates. Furthermore, we
can recapitulate rapid migration at a nonoptimal
ECM concentration by manipulating myosin II
activity. Thus, the interplay between actomyo-
sin and FA dynamics results in a specific bal-
ance between adhesion and contraction, which
induces maximal migration velocity.

INTRODUCTION

Cell migration is described as a four-step cycle that spa-

tially and temporally coordinates forces in the actomyosin

cytoskeleton with extracellular adhesion (Lauffenburger

and Horwitz, 1996). Actin filaments (F-actin) in migrating

epithelial cells are organized into two distinct modules

that mediate different steps in the migration cycle (Gupton

et al., 2005; Ponti et al., 2004; Salmon et al., 2002). In the

first step of migration, a thin lamellipodium protrudes

along the leading edge in the direction of migration. The la-

mellipodium F-actin module is characterized by filament
polymerization into a dense network followed by near

complete depolymerization at the lamellipodium base

(Ponti et al., 2004; Svitkina and Borisy, 1999; Watanabe

and Mitchison, 2002). The force produced by polymeriza-

tion is thought to drive leading-edge protrusion (Pollard

and Borisy, 2003) and retrograde flow of F-actin away

from the cell edge (Forscher and Smith, 1988; Ponti

et al., 2004). In the second step of migration, the protru-

sion adheres to the extracellular matrix (ECM) by focal ad-

hesions (FAs) that assemble at the lamellipodium base.

FAs contain transmembrane integrins that link the ECM

to F-actin via structural and signaling proteins (Critchley

et al., 1999; Wozniak et al., 2004).

The contractile F-actin module extends from nascent

FAs at the lamellipodium base to near the nucleus and is

comprised of F-actin-myosin II networks and bundles in

the lamella, convergence zone, and central cell area

(Salmon et al., 2002). Here, slow myosin II-powered F-ac-

tin retrograde flow from the lamella (Gupton et al., 2005;

Ponti et al., 2004) and anterograde flow from the central

cell region merge in the convergence zone, where F-actin

remains stationary and depolymerizes (Vallotton et al.,

2004). This myosin II-driven actin convergence is thought

to pull on strong FAs at the front to generate traction in the

third step of migration and pull on weaker FAs in the rear

that detach (Kaverina et al., 2002), moving the cell body

forward in the fourth and final step of migration. Impor-

tantly, activities of F-actin, myosin II, and FAs within these

actin modules must be implemented in a precise place

and temporal order to achieve productive, directed cell

movement.

Fifteen years ago, a mathematical model predicted that

migration speed would exhibit a biphasic response to in-

creasing adhesion strength, with slow migration occurring

at low and high strength and fast migration occurring at in-

termediate strength (DiMilla et al., 1991). The model as-

sumed that migrating cells possess an asymmetry in ad-

hesion strength from front to rear, with front and rear

connected by symmetric contractile elements, but did

not consider dynamic organizational states of F-actin

and FAs. This biphasic dependence of migration velocity

on increasing adhesion strength has since been sup-

ported experimentally by modulating ECM ligand density,
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integrin expression levels, or integrin-ECM binding affinity

(DiMilla et al., 1993; Huttenlocher et al., 1996; Palecek

et al., 1997), and a front-to-rear gradient in cell adhesion

strength has also been demonstrated (Schmidt et al.,

1993).

The common explanation for the biphasic migration-ve-

locity response to increased adhesion strength has been

simple mechanical effects: At low adhesion, contraction

pulls weak FAs at both the cell front and rear from the sub-

strate; at high adhesion, contraction cannot overcome ad-

hesion at the cell front or rear; while at intermediate adhe-

sion, an optimum is reached, with traction generated at

the front coupled to adhesion detachment in the rear.

However, it is unknown whether adhesion strength spa-

tially or temporally modulates the activities of F-actin, my-

osin II, or FAs within the lamellipodium or contractile mod-

ules to change characteristics of protrusion, adhesion,

traction, or deadhesion phases of cell migration. This

would be expected since adhesion strength alters sig-

nal-transduction pathways that regulate myosin II activity

and FA and F-actin assembly/disassembly (Asthagiri

et al., 1999; Webb et al., 2004). In addition, spatial and

temporal dynamics of F-actin, myosin II, and FAs may

be mechanically interdependent (Burridge and Chrzanow-

ska-Wodnicka, 1996). Specifically, myosin II minifilaments

are believed to generate tension in F-actin networks (Ver-

khovsky et al., 1999) to drive the clustering of actin-asso-

ciated integrins at nascent integrin engagement sites to

promote FA formation and maturation (Chrzanowska-

Wodnicka and Burridge, 1996; Delanoe-Ayari et al.,

2004; Webb et al., 2004). FA formation may immobilize

the local actin network via connection to the ECM. Myosin

II-dependent tension has been implicated in actomyosin

network bundling between these adhesion-immobilized

sites to concentrate contractile power into stress fibers

(Chrzanowska-Wodnicka and Burridge, 1996). Strongly

contractile actomyosin bundles may pull weaker FAs

from the ECM (Kaverina et al., 2002; Webb et al., 2004).

FA disengagement may then release immobilized F-actin,

allowing local debundling and redistribution of myosin II

tensile forces in the F-actin network.

Together, these observations suggest that the adhe-

sion-strength dependence of cell migration velocity could

arise from spatially and temporally interdependent feed-

back between F-actin assembly/disassembly and motion,

activated myosin II, and FA assembly/disassembly. Fur-

thermore, optimization of cell migration velocity could oc-

cur by a specific spatiotemporal state of the actomyosin

cytoskeleton and FAs. Here, we used quantitative fluores-

cent speckle microscopy (qFSM) to test the hypothesis

that adhesion strength, modulated by ECM ligand density,

affects specific aspects of the organization and dynamics

of the lamellipodium and contractile F-actin modules. We

used immunofluorescence and live-cell microscopy to de-

termine whether changes in organization and dynamics of

myosin II and FA proteins correlate with cell adhesion

strength and/or migration velocity. We characterize the

unique dynamic organizational state of F-actin, myosin
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II, and FAs for rapid migration at intermediate adhesion

strength and recapitulate fast migration mediated by this

specific phenotype at a nonoptimal ECM density by ma-

nipulating myosin II activity. Thus, adhesion strength

modulates migration speed by spatiotemporal feedback

between specific parameters of actomyosin and FA

dynamics.

RESULTS

Previous studies have shown that vertebrate cells in cul-

ture display maximal migration velocity at intermediate

adhesion strength, as modulated by ECM density (DiMilla

et al., 1993; Huttenlocher et al., 1996; Palecek et al., 1997).

We first established a similar behavior for PtK1 epithelial

cells since we have extensively characterized their F-actin

cytoskeleton organization and dynamics (Gupton et al.,

2005; Ponti et al., 2004; Wittmann et al., 2003). PtK1 cells

express b1-integrins (data not shown), which dimerize with

a-integrins to form a fibronectin (FN) receptor. PtK1 cells

plated on coverslips coated with increasing FN concentra-

tion ([FN]) (0–100 mg/ml) showed increased spreading

(Figure 1A), increased cell binding (Figure 1B), and in-

creased adhesion strength (Figure 1C). Migration velocity

of cells in small epithelial islands (two to six cells) was

measured from time-lapse movies (see Figure 1D and Ta-

ble S1 in the Supplemental Data available with this article

online). Cells plated on coverslips coated with 10 mg/ml FN

(0.84 ± 0.02 mm/min) migrated significantly faster than

cells plated on higher and lower [FN] (Figure 1D; Table

S1; p < 0.0001, Tukey’s HSD post hoc test [HSD]), recapit-

ulating behavior of other cell types (DiMilla et al., 1993; Pa-

lecek et al., 1997).

Leading-Edge Dynamics Do Not Correlate with

Biphasic Cell Migration Velocity on Increasing

Adhesion Strength

Since protrusion is the first step of migration, we used ky-

mographs of time-lapse movies to analyze leading-edge

behavior in cells migrating at various adhesion strengths

(Figure 1E; Table S1). Surprisingly, unlike migration veloc-

ity, no parameters of protrusion or retraction exhibited a bi-

phasic response to increasing adhesion strength. Specif-

ically, the velocity or persistence of protrusion phases was

not significantly altered (p = 0.7 and 0.5, respectively,

HSD), while the distance of protrusion phases increased

with increasing adhesion strength, with significance be-

tween some conditions (Table S1; p < 0.05 HSD). The du-

ration and distance of retraction phases directly corre-

lated with adhesion strength, while the velocity of

retraction phases decreased with higher adhesion (Fig-

ure 1F; p < 0.0001 HSD). The increase in retraction dura-

tion caused a decrease in the frequency of switching

from retraction to protrusion at high adhesion strength

(Figure 1G). Since retraction parameters were affected

by adhesion strength, this suggested that the lamellipo-

dium interacts with the substrate during retraction (Bailly

et al., 1998). This was confirmed by comparing edge



Figure 1. Migration Rate and Leading-Edge Dynamics in Response to Increasing Adhesion to FN

(A) PtK1 cells 4 hr after plating on coverslips coated with the indicated FN concentration ([FN]) (mg/ml).

(B) FN adhesion to coverslips determined from fluorescent FN (open squares) and number of cells bound 2 hr after plating (black diamonds) with the

indicated [FN] (±SD, indicated by acid phosphatase activity to quantify total protein).

(C) Percentage of cells and cell islands remaining attached at different [FN] after 250 dyn/cm2 fluid shear stress for 10 min (±SEM).

(D) Velocity of cells in small islands migrating on the indicated [FN] (±SEM).

(E) Kymographs from time-lapse phase-contrast images of PtK1 cells ([FN] for coating in mg/ml in upper right).

(F) Time spent in protrusion and retraction phases versus [FN] (±SEM, n = 20–50 measurements/condition).

(G) Frequency of switching between protrusion and retraction phases versus [FN].
dynamics with total internal reflection fluorescence and

wide-field epifluorescence microscopy to determine

when the cell edge was close to the substrate (Figure S1).

Although no parameters of protrusion correlated with mi-

gration velocity, cell migration clearly requires leading-

edge advance. Thus, transient edge fluctuations are de-

coupled from net edge advance.

Adhesion-Strength-Dependent Changes

in Migration Velocity Correlate with Changes

in the Organization, Kinetics, and Kinematics

of the F-Actin Cytoskeleton

To determine whether adhesion-strength-dependent

changes in migration rate affected the organization of F-

actin dynamics within the lamellipodium and contractile

F-actin modules, we performed fluorescent speckle mi-

croscopy (FSM) (Danuser and Waterman-Storer, 2003)

of cells microinjected with X-rhodamine actin as they mi-

grated at low, intermediate, or high adhesion strength

(Figure 1C; 5, 10, and 30 mg/ml FN coating concentrations
will be used throughout the study to correspond to low, in-

termediate, and high [FN], respectively). The lamellipo-

dium is the region of fast retrograde F-actin flow organized

in a treadmilling array that resides between the leading

edge and the lamella (Ponti et al., 2004; Salmon et al.,

2002). FAs initiate at the junction between the lamellipo-

dium and lamella, where F-actin flow velocity slows

sharply (Ponti et al., 2004). The contractile module is lo-

cated between the lamellipodium base and near the nu-

cleus and is composed of the lamella, marked by slow ret-

rograde flow; the central cell area, marked by slow

anterograde flow; and the convergence zone at the junc-

tion of the lamella and the cell central region, with zero

net actin flow (Salmon et al., 2002).

We examined FSM movies to qualitatively evaluate the

effects of adhesion strength on these modules (Movie

S1). In cells at intermediate and high adhesion strength,

the lamellipodium-lamella junction possessed a position-

ally stable, sharply defined F-actin flow-speed gradient.

In contrast, at low adhesion strength, this border was
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Figure 2. Fast F-Actin Flow Convergence and Depolymerization in the Convergence Zone Correlate with Intermediate Adhesion

Strength
(A and B) Phase-contrast (A) and FSM image of X-rhodamine actin (B) in PtK1 cells migrating on low (5 mg/ml), medium (10 mg/ml), and high (30 mg/ml)

[FN].

(C) Kymographs taken from lines oriented along the axis of F-actin flow (highlighted in [B]). Lines in (C) highlight the F-actin speckle flow rate in the

lamellipodium (LP), lamella (LA), convergence zone (CZ), and central cell region (CC).

(D) qFSM kinetic maps of F-actin polymerization (red) and depolymerization (green) rates. Brightness indicates relative rate magnitude. Rapid depo-

lymerization occurs in the CZ of the cell on medium [FN] (arrowhead).

(E) qFSM kinematic maps of the speed of F-actin flow. A very thin convergence zone of near zero F-actin flow occurs at medium [FN] (between

arrows).

(F) qFSM speckle trajectories from regions indicated by boxes in (E) indicate velocity of F-actin flow.

(G) Average rates of F-actin retrograde (�) or anterograde (+) flow in the lamellipodium (Lp), lamella (La), CZ, CC, and convergence rate (CR) deter-

mined from kymographs of FSM movies (±SD).

(H) Average width of cellular regions measured from kymographs (±SEM). Red asterisks in (G) and (H) denote significant differences (p < 0.05)

between other conditions in the same cellular region (Tukey’s HSD post hoc test [HSD]).
variable in position and had a shallower speed gradient.

Similarly, in cells at low adhesion strength, F-actin flow

in the lamella and cell central region did not meet in

a well-defined convergence zone of near zero F-actin

flow as at medium and high adhesion strength. Thus,

stronger adhesion is required to create or maintain F-actin

flow-velocity gradients that define delineation between

actin modules in migrating cells.

F-Actin Dynamics in the Lamellipodium

We next used qFSM analysis software to produce spatio-

temporal maps of the velocity of F-actin flow (kinematics)
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and the organization of F-actin assembly/disassembly

rates (kinetics) (Ponti et al., 2004). We first examined

F-actin kinematics and kinetics in the lamellipodium to de-

termine whether they were modulated by adhesion

strength. qFSM and kymograph analysis of kinematics

(Figures 2C and 2E; Movie S2) revealed that F-actin retro-

grade flow velocity in the lamellipodium increased with

adhesion strength (p < 0.0005 HSD; Figure 2G; Table

S2). Lamellipodium width correlated inversely with migra-

tion velocity, being narrowest at intermediate adhesion

strength (p < 0.005 HSD; Figure 2H; Table S2). qFSM



mapping of F-actin assembly/disassembly rates (Fig-

ure 2D; Movie S3) revealed that cells at intermediate

and high adhesion strength displayed high F-actin poly-

merization rates (bright red) along the cell edge juxta-

posed to rapid depolymerization (bright green). This is in-

dicative of a treadmilling lamellipodium array (Ponti et al.,

2004). In contrast, at low adhesion strength, depolymer-

ization spread throughout the cell front, in agreement

with our qualitative notion of a poorly defined lamellipo-

dium/lamella junction. Our image-analysis algorithms

preclude the ability to compare absolute rates of F-actin

kinetics between cells.

F-Actin Dynamics in the Contractile Module

We next analyzed F-actin dynamics in the contractile

module in cells at different adhesion strengths. qFSM

and kymograph analysis showed that F-actin flow veloc-

ity in both the lamella and cell central region decreased

significantly with increasing adhesion strength (p <

0.0005 HSD; Figures 2C and 2G). At low adhesion, F-ac-

tin kinematics in the contractile module were fast and

variable (indicated by large standard deviations in flow

rates; Figure 2G). At high adhesion strength, F-actin

flow in the lamella and central cell region was nearly fully

inhibited, with a wide convergence zone of near zero flow

rate (Figures 2G and 2H). In contrast, at intermediate ad-

hesion strength, cells displayed well-organized, interme-

diate-speed retrograde and anterograde flows that met

in a narrow zone of zero F-actin flow velocity (Figures

2C and 2E, white arrows; Figure 2F; Movies S1 and

S2). In these cells, central anterograde flow was signifi-

cantly greater than lamella retrograde flow (p < 0.001

t test), a front-to-back asymmetry in kinematics not ob-

served at either low or high adhesion strength. Lamella

width was significantly larger in cells at intermediate

adhesion strength than at low or high strength, while

the convergence zone was most narrow at intermediate

adhesion strength (p < 0.0001 HSD). This indicates that

fast cell migration at intermediate adhesion strength

correlates with fast F-actin convergence over a small

area.

The spatial organization of F-actin assembly/disassem-

bly kinetics was then compared in the contractile module.

At all adhesion strengths, there were interspersed punctae

of polymerization and depolymerization (Figure 2D; Movie

S3), as described (Ponti et al., 2004). Comparison of F-ac-

tin kinetic and kinematic maps showed that for cells mi-

grating at intermediate adhesion strength, rapid F-actin

depolymerization (bright green) was concentrated in the

convergence zone (white arrowhead, Figure 2D). Thus,

fast flow convergence is coupled to rapid F-actin depoly-

merization.

Together, analysis of FSM data shows that a narrow la-

mellipodium with an intermediate F-actin flow rate and

a contractile module consisting of a wide lamella, well-or-

ganized, fast, asymmetric F-actin flow convergence, and

a narrow zone of zero F-actin flow with rapid filament de-

polymerization correlate with fast migration at intermedi-

ate adhesion strength.
Adhesion Strength Affects Myosin II Distribution

and Activity in the Contractile Module

Since F-actin kinematics in the contractile module of mi-

grating epithelial cells are myosin II dependent (Gupton

et al., 2002, 2005; Ponti et al., 2004) the adhesion-depen-

dent changes in the contractile module that we observed

could be due to changes in myosin II distribution and/or

activity. To test this, cytoskeletal bound myosin IIA heavy

chain (MHC) and F-actin were localized in prepermeabi-

lized cells at different adhesion strengths (Figures 3A–

3C). All cells displayed a gradient of MHC punctae across

the contractile module, from very sparse beginning at�2–

4 mm from the leading cell edge (Figure 3A, arrowhead) to

extremely dense at�10–15 mm from the edge and then ta-

pering to near the nucleus (Verkhovsky et al., 1999). The

MHC-depleted zone near the cell edge corresponds to

the lamellipodium (Gupton et al., 2005; Ponti et al.,

2004), while the MHC concentration peak likely corre-

sponds to the convergence zone. To quantitatively com-

pare MHC distribution, fluorescence intensity line scans

of MHC immunofluorescence and phalloidin staining

were taken normal to the cell edge to the convergence

zone. Plots of average intensity versus distance from the

edge showed that MHC levels relative to F-actin corre-

lated with migration velocity, with highest levels at inter-

mediate adhesion strength (Figures 3B and 3C; p <

0.0001 HSD). In contrast, immunoblotting of cell lysates

showed that total MHC was independent of adhesion

strength (Figure 3G).

To determine whether myosin II activation correlated

with migration velocity, serine 19-phosphorylated myosin

II regulatory light chain (pMLC), an indicator of activated

myosin II (Adelstein and Conti, 1975), was localized

(Figure 3D). Like MHC, pMLC levels relative to F-actin

levels were higher across the contractile module at inter-

mediate adhesion strength than at both low and high ad-

hesion (Figures 3E and 3F; p < 0.0001 HSD). Immunoblot-

ting of cell lysates showed that total pMLC increased

directly with adhesion strength (Figure 3G), in contrast to

MHC. pMLC increases mirrored increases in phosphotyro-

sine levels (Figure S2), suggesting that myosin II activity

and signaling from FAs may be coordinated. In summary,

increased local myosin II activation in the contractile mod-

ule correlates with fast migration.

Adhesion Strength Directs the Organization

of Focal Adhesions

Presumably, ECM-dependent effects on migration veloc-

ity and actomyosin behavior are transmitted mechanically

and/or biochemically by FAs. To determine how adhesion

strength affects FA morphometry, F-actin and either b1-in-

tegrin, paxillin (a structural and signaling scaffold molecule

in FAs), or vinculin (an F-actin binding protein in FAs) were

localized in cells at increasing adhesion strength. Similar

results were obtained for all three proteins (Figure 4 and

data not shown). Cells at low adhesion strength had only

peripheral FAs that were often associated with thick pe-

ripheral F-actin bundles (Figures 4A and 4B) (Cox et al.,
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Figure 3. Increased Myosin II Activity across the Lamella Correlates with Intermediate Adhesion Strength

(A) F-actin phalloidin staining and myosin IIA heavy chain (MHC) immunofluorescence in PtK1 cells migrating on low (5 mg/ml), medium (10 mg/ml), and

high (30 mg/ml) [FN]. Merge: F-actin = red, MHC = green. In (A) and (D), boxes in center column indicate position of insets in right column.
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Figure 4. Adhesion Strength Affects the Organization and Density of Paxillin in Focal Adhesions

(A–C) F-actin phalloidin staining (A) and paxillin immunofluorescence (B) in PtK1 cells on low (5 mg/ml), medium (10 mg/ml), and high (30 mg/ml) [FN].

Merge (C): paxillin = green, phalloidin = red.

(D and E) Plots show the size (D) and density (E) of paxillin staining of individual FAs versus [FN].

(F and G) The percentage of the ventral cell area containing paxillin (F) and the total amount of paxillin in FAs on the ventral cell area (G) versus [FN]. Box

and whisker plots in this and subsequent figures indicate the 25th percentile (lower bound), median (middle line), 75th percentile (upper bound), near-

est observations within 1.5 times the interquartile range (whiskers), 95% confidence interval of the median (notches), and near (+) and far (0) outliers.

Asterisks indicate significant differences from all other [FN] (p < 0.0001 HSD).
2001; Huttenlocher et al., 1996). These FAs had signifi-

cantly greater area and were more densely stained (fluo-

rescence intensity/area, p < 0.0001 HSD; Figures 4D

and 4E) than in cells at either intermediate or high adhe-

sion. In cells at intermediate adhesion strength, small

FAs localized across the lamella and increased in size to-

ward the convergence zone, where F-actin bundles col-

lected in a transverse band (Figures 4A–4C). These FAs

were intermediate in size and molecular density. At high

adhesion strength, FAs were small, sparsely stained, dis-

tributed throughout the ventral cell surface, and con-
nected to many small F-actin bundles spanning the cell

(Figure 4). High adhesion strength significantly increased

the percentage of the ventral surface area containing

FAs (p < 0.0001 HSD; Figure 4F), which, when multiplied

by the average FA density, revealed a direct relationship

between adhesion strength and the total amount of FA

molecules at the ventral cell surface (p < 0.0001 HSD;

Figure 4G). Thus, increased adhesion strength is mediated

by increased integrin engagement to the ECM (DiMilla

et al., 1991; Palecek et al., 1997) in a spatially specific

manner (Cox et al., 2001; Huttenlocher et al., 1996), with
(B) Average relative intensity of F-actin (diamonds; light, medium, and dark blue indicate low, medium, and high [FN], respectively) and MHC staining

(circles; pink, orange, and red indicate low, medium, and high [FN], respectively) measured from regions like that boxed in upper left of (A); n = 30

measurements in 10 cells/treatment).

(C) MHC:F-actin fluorescence intensity ratio from the cell edge toward the cell center (light, medium, and dark blue indicate low, medium, and high

[FN], respectively).

(D) F-actin phalloidin staining and serine 19-phosphorylated myosin regulatory light chain (pMLC) immunofluorescence in cells on low, medium, and

high [FN]. Merge: F-actin = red, pMLC = green.

(E) Average levels of pMLC and F-actin staining. In (E) and (F), the measurement method, analysis, and color scheme of data presentation are the

same as in (B) and (C).

(F) pMLC:F-actin fluorescence intensity ratio.

(G) Immunoblot and quantification of MHC and pMLC levels normalized to tubulin (tub) levels from PtK1 cells on the indicated [FN]. Graph shows

averages ± SD from three experiments.
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the adhesion strength promoting fastest migration corre-

sponding to FAs of an intermediate size and density dis-

tributed across the lamella.

Fast Migration Correlates with Intermediate

Focal-Adhesion Lifetime and Rapid Renewal

of Focal-Adhesion Components

Two key steps in migration are FA formation and disas-

sembly (Webb et al., 2002). To test whether adhesion

strength affected FA kinetics, we imaged migrating cells

expressing GFP-paxillin by time-lapse spinning-disk con-

focal microscopy (Figure 5A; Movie S4) and measured the

rate of GFP intensity change in forming or disassembling

FAs in the lamella (Webb et al., 2004) (Figures 5B and

5C; Table S2). This revealed that both FA assembly and

disassembly rates were inversely correlated with adhesion

strength. Specifically, GFP-paxillin intensity increased

significantly faster in FAs at low adhesion strength com-

pared to at high adhesion (p = 0.0065 HSD) and decreased

significantly faster at low adhesion strength than at inter-

mediate and high adhesion (p < 0.0001 HSD; Table S1).

FA lifetime was measured from the first appearance of

a resolvable GFP-paxillin cluster until complete disassem-

bly. FA lifetime increased significantly with adhesion

strength (p < 0.001, t test low versus medium strength). In-

deed, most FAs at high adhesion strength never disas-

sembled in 45 min of imaging (Movie S4), while FAs at

low and intermediate strength had an average lifetime of

9.12 ± 1.11 min and 16.98 ± 1.81 min, respectively

(Figure 5D). Time-lapse imaging revealed that cells at

low adhesion strength often had very small peripheral

FAs that were very short lived or rapidly slid and merged

with other FAs to make large FAs. These short-lived, small

adhesions may not have been apparent in fixed cells

where peripheral FAs were large and dense (Figure 4).

FA proteins constantly exchange with the cytoplasmic

or membrane-associated pool (Zaidel-Bar et al., 2003; Zi-

merman et al., 2004). To determine whether this cycling is

affected by adhesion strength, we performed fluores-

cence recovery after photobleaching (FRAP; Figure 6;

Movie S5). GFP-av-integrin, GFP-vinculin, or GFP-talin (a

FA protein that binds b-integrins and F-actin) was ex-

pressed in cells with increasing adhesion strength. Single

FAs in the lamella were bleached with a 488 nm laser, and

fluorescence recovery was recorded. GFP-vinculin and -

talin showed complete fluorescence recovery, while

GFP-av-integrin recovery was incomplete (65%), indicat-

ing a nonexchangeable pool within FAs (Table S2). None

of these molecules exhibited adhesion-strength-depen-

dent changes in recovery completion (Table S2). To com-

pare molecular dissociation rates, we calculated recovery

half-times (t1/2). This revealed that GFP-av-integrin and

GFP-vinculin dissociation correlated with cell migration,

as their recovery was significantly faster (lower t1/2) at in-

termediate adhesion strength compared to low or high

strength (p < 0.05, Fisher’s LSD post hoc test for integrin

on intermediate versus low and high adhesion strength;

p < 0.05 and p < 0.01, t test for vinculin on intermediate
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Figure 5. Intermediate Focal-Adhesion Assembly, Disassem-

bly, and Lifetime Correlate with Intermediate Adhesion
Strength

(A) Examples of GFP-paxillin fluorescence time-lapse images taken in

PtK1 cells migrating on low (5 mg/ml), medium (10 mg/ml), and high (30

mg/ml) [FN] that were analyzed to determine FA assembly/disassembly

rate constants and lifetimes. Arrowheads and arrows indicate assem-

bling and disassembling FAs, respectively. Elapsed time in min is

shown.

(B and C) Box and whisker plots (explained in Figure 4) of average rate

constants of FA assembly (B) and disassembly (C) measured from 5–

20 FAs per cell in 2–3 cells per condition. Asterisks indicate significant

differences (p < 0.01 HSD) between specified conditions (L, M, and H

indicate low, medium, and high [FN], respectively).

(D) Average FA lifetime measured from the initiation of a new GFP-pax-

illin cluster to complete disappearance. FAs in cells on high [FN] never

disassembled within the 45 min of imaging. Asterisks indicate signifi-

cant differences from all other conditions. Error bars indicate ±SEM.
.



Figure 6. Rapid av-Integrin and Vinculin Dissociation from Focal Adhesions Correlates with Intermediate Adhesion Strength

(A) Example of GFP-av-integrin FRAP experiment in a PtK1 cell on low (5 mg/ml) [FN]. Time (in s) relative to laser bleaching (arrowhead) is shown.

(B–D) Examples of bleach and recovery curve for av-integrin fluorescence in cells migrating on low, medium (10 mg/ml), and high (30 mg/ml) [FN].

(E) Average half-time for fluorescence recovery after bleaching (t1/2, s) for GFP-talin, GFP-vinculin, and GFP-av-integrin in FAs (n = 1–3 FAs in 4–10

cells per treatment; L, M, and H indicate low, medium, and high [FN] respectively). Asterisks indicate significant differences (p < 0.05 HSD) between

the same FA component on different [FN].
versus low and high respectively; Figure 6E). GFP-talin

fluorescence showed similar recovery times at all adhe-

sion strengths, which were significantly faster than the re-

covery of GFP-av-integrin (p < 0.0001 HSD).

Together, these data show that rapid cell migration at

intermediate adhesion correlates with intermediate rates

of FA assembly, disassembly, and lifetime and with the

rapid turnover of the structural components integrin and

vinculin within FAs.

Enhancing Myosin II Activity in Cells Migrating

at High Adhesion Strength Phenocopies Cells

Migrating at Intermediate Adhesion Strength

The above results indicate that fast migration at intermedi-

ate adhesion is mediated by a specific dynamic organiza-

tional state of F-actin, myosin II, and FAs. Myosin II-medi-

ated contractility is thought to play a pivotal role in actin

dynamics and organization and FA formation and turn-

over. We therefore sought to determine how manipulating

myosin II activity affects the relationship between F-actin

dynamics, FA morphometry, and cell migration. To de-

crease myosin II activity, cells were treated with low levels

of the myosin II ATPase inhibitor blebbistatin (1 or 5 mM)

(Straight et al., 2003). Myosin II activity was enhanced

with low levels of calyculin A (CA, 0.5 or 1 nM), a type II

phosphatase inhibitor that at low concentrations is rela-

tively specific to myosin light-chain phosphatase (Ishihara

et al., 1989), which thus promotes activation of myosin II.

These treatments did not alter myosin II distribution, yet

they affected its activity (Figure S3).

Analysis of paxillin immunofluorescence revealed that

decreasing myosin II activity with blebbistatin at high
C

adhesion strength generated smaller, less dense FAs

than in untreated cells at high adhesion (p < 0.0001

HSD), although FAs were distributed similarly (Figure 7A).

Enhancing myosin II activity with CA at high adhesion

strength significantly increased FA size and density and

promoted a more peripheral localization compared to un-

treated cells at high adhesion (p < 0.0001 HSD). Treatment

with cells on low and medium [FN] induced trends similar

to those that we found at high [FN]. These data suggest

that increasing myosin contractility promotes FA growth

and peripheral distribution.

Since a specific FA size and distribution was associated

with rapid migration at intermediate adhesion strength, we

wanted to determine whether the myosin II activity level

that promoted this FA morphometry at high adhesion

also promoted rapid migration (Figure 7D). Indeed, en-

hanced myosin II activity (0.5 nM CA) at high adhesion in-

creased the migration velocity (p < 0.0001 HSD). Either

decreasing or enhancing myosin II activity at intermediate

adhesion caused significant decreases in velocity (p <

0.0001 HSD), suggesting that cells at intermediate adhe-

sion already have optimal contractility for migration (Pale-

cek et al., 1997). Decreasing myosin II activity slightly in-

creased migration velocity at low adhesion (p = 0.08, t

test). Thus, optimizing myosin II activity overcomes the in-

hibitory effects of excess or insufficient adhesion strength

on cell migration velocity, as was predicted (DiMilla et al.,

1991).

To determine whether increased migration speed pro-

moted by enhanced myosin II activity in cells at high ad-

hesion strength correlated with a specific F-actin dy-

namic organization, qFSM analysis of F-actin was
ell 125, 1361–1374, June 30, 2006 ª2006 Elsevier Inc. 1369



Figure 7. Modulation of Myosin II Activity Alters Focal-Adhesion Organization, Cell Migration Velocity, and F-Actin Behavior

(A) Paxillin immunofluorescence of PtK1 cells on high (30 mg/ml) [FN] (Control) treated with indicated concentrations of blebbistatin (Bleb) or calyculin A

(CA).

(B and C) Quantification of FA size (B) and density (C) in cells on high [FN] treated with Bleb or CA. Red asterisks indicate significant differences

between all conditions (p < 0.0001 HSD); blue asterisks indicate pairs that are not significantly different from each other.

(D) Migration velocity of cells plated on indicated [FN], treated with 1 mM Bleb, 0.5 nM CA, or left untreated. Red asterisks indicate significant differ-

ences between treated and untreated cells (p < 0.0001 HSD); blue asterisks indicate statistical significance from untreated cells at 92% confidence

(t test).

(E–G) Phase contrast (E), actin FSM (F), and kymograph (G) of a cell on high [FN] treated with 0.5 nM calyculin A.

(H–J) Kinetic (H) and kinematic (I and J) qFSM maps of the rates of F-actin assembly/disassembly (H) (poly = red, depoly = green), speed (I), and ve-

locity (J) of the cell in (E) and (F).

(K and L) Rates of actin flow (K) and region widths (L) in cells on medium and high [FN] and in CA-treated cells on high [FN]. See Figures 2C and 2G

for explanation of abbreviations in (K) and (L). Asterisks indicate significant differences between all other treatments (p < 0.0001 HSD). Error bars

indicate ±SEM.
carried out on cells at high adhesion strength in the pres-

ence of 0.5 nM CA (Figures 7E–7L; Movie S6). Remark-

ably, these cells displayed an actin dynamics phenotype

in the contractile module that was indistinguishable from

untreated cells at intermediate adhesion. Specifically,

compared to untreated cells at high adhesion strength,

the contractile module of CA-treated cells had increased

rates of F-actin flow in the lamella and cell center, causing

increased convergence (Figure 7K; p < 0.0001 HSD).

They possessed a front-to-back asymmetry in flow rate

and a wider lamella and narrower convergence zone

where F-actin depolymerization was concentrated (Fig-

ures 2K and 2L). CA treatment promoted faster retro-

grade F-actin flow in the lamellipodium compared to un-

treated cells at either intermediate or high adhesion

strength (p < 0.0001 HSD), although lamellipodium width

and the treadmilling array were indistinguishable under

the three conditions.
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Together, these data indicate that F-actin, FAs, and my-

osin II are interdependent and that a specific balance be-

tween myosin II activity and adhesion strength can medi-

ate the generation of a specific FA and F-actin phenotype

in the contractile module that correlates with rapid cell

migration.

DISCUSSION

The well-established biphasic cell migration-velocity re-

sponse to increasing adhesion strength was originally pre-

dicted by a simple mathematical model in which a positive

adhesion gradient from cell front to rear was linked by con-

tractile elements in series. However, unlike assumptions

underlying the original model, cell migration is mediated

by the interdependent dynamic systems of F-actin, myo-

sin II, and FAs. Here, we dispel the simple model by char-

acterizing dynamic organizational states of each system



at different adhesion strengths and demonstrate the inter-

dependence between organizational states of these sys-

tems by establishing how perturbation of one system

propagates to changes in the other systems. We show

that a specific dynamic organizational state of F-actin,

myosin II, and FAs mediates fast epithelial cell migration

at intermediate adhesion strength. Manipulating myosin

II activity at nonoptimal adhesion recapitulates the spe-

cific state, suggesting that a balance between adhesion

strength and myosin II activity is required for optimal mi-

gration. In the following, we incorporate our findings into

a new model. We propose that effects of adhesion

strength on FA distribution, combined with local myosin

II activity in the contractile module, direct specific spatio-

temporal organization states of F-actin. Myosin II contrac-

tion then feeds back through a specific F-actin organiza-

tion to produce a specific pattern of FA turnover,

mediating the resulting cell migration velocity.

To promote the general organization of F-actin seen in

migrating epithelial cells, we suggest that activated myo-

sin II generates a gradient of convergent tension on F-ac-

tin across the contractile module, peaking in the module

center. Why and how myosin II is excluded from the lamel-

lipodium and what mediates its spatially specific pattern

of assembly are unknown. However, when coupled with

filament polymerization at the cell front and center, con-

vergent tension may drive, by a network-contraction

mechanism (Verkhovsky et al., 1999), convergent F-actin

flows from the lamella and center toward the convergence

zone. Concentrated F-actin convergence promotes fila-

ment depolymerization, possibly through a mechanical

and/or biochemical pathway such as ‘‘solation-contrac-

tion coupling’’ (Taylor and Fechheimer, 1982). This depo-

lymerization could replenish actin monomers for efficient

cytoskeleton remodeling.

The adhesion-dependent variations on this general ac-

tomyosin organization that we discovered are likely medi-

ated by FAs. We suggest that FAs nucleate at the base of

the lamellipodium by integrin binding to permissive sites

on the substrate at a frequency proportional to ECM den-

sity. Thus, the total number of FAs is related to ECM den-

sity and FA lifetime, as our results suggest. Why FAs form

at this location is unknown. However, their initiation may

induce local ‘‘engagement’’ of flowing F-actin, resulting

in the partial immobilization of F-actin relative to the

ECM. This creates the flow-speed gradient observed at

the lamellipodium/lamella junction at intermediate and

high adhesion strengths where FAs were frequent. This

gradient was lacking at low adhesion where FAs were

sparsely distributed. The degree of F-actin engagement

may be dictated by the total number of ECM-coupled ‘‘ad-

hesion units,’’ resulting in the inverse relationship between

actin flow speed in the contractile module and adhesion

strength that we observed.

The myosin II-mediated tension on F-actin engaged at

FAs may deform the F-actin network into bundles, as

seen in the contractile module. F-actin bundle size may

be dictated by the number of actin-engaged adhesion
units at a FA, while the F-actin bundle/network organiza-

tion may be dictated by the distribution and size of FAs.

As such, when FAs are large, molecularly dense, and

sparsely distributed, as at low adhesion strength, F-actin

bundles are large, while when FAs are small, molecularly

sparse, and distributed throughout the cell, F-actin bun-

dles are small, frequent, and span the cell, as we saw at

high adhesion strength. When FAs form a size gradient

across the lamella, F-actin progresses from network orga-

nization at the base of the lamellipodium to an increasing

bundle-like character in the convergence zone, as seen in

cells at intermediate adhesion strength.

We further suggest that the amount of myosin II activity

per FA affects FA morphometry and turnover, creating

a feedback between these cellular systems that results

in the adhesion-strength-dependent effects on cell migra-

tion. Once initiated, contraction mediates integrin cluster-

ing, FA assembly, and growth of associated actomyosin

bundles (Chrzanowska-Wodnicka and Burridge, 1996).

Further increases in actomyosin contractility may promote

FA turnover by producing more contractile power than the

FA can resist. This is supported by our data at high adhe-

sion, where low myosin II activity across the lamella on

many small F-actin bundles and FAs would produce

a low level of actomyosin contraction per FA, and this cor-

related with slow FA assembly, long lifetime, and slow dis-

assembly. At low adhesion, although myosin II activity in

the lamella was low, there were many fewer FAs, suggest-

ing a high contraction:FA ratio. Thus, the rare FA would be

expected to assemble rapidly, possess a large F-actin

bundle, disassemble rapidly, and exhibit a short lifetime,

as we observed. These data suggest that the lack of FA

turnover may inhibit migration at high adhesion strength,

while the lack of temporal stabilization of FAs may inhibit

migration at low adhesion. In cells migrating at intermedi-

ate adhesion strength, higher myosin II activity distributing

contractile forces through an F-actin network to an inter-

mediate number of FAs would induce intermediate FA life-

time and turnover rates. Since FAs preferentially form at

the lamella front, an intermediate FA lifetime and assembly

rate would result in the specific distribution of FAs in a gra-

dient of size across the lamella as seen in cells at interme-

diate adhesion strength. This would produce a gradient in

the contraction:FA ratio across the contractile module,

with small new FAs at the cell front resisting low contrac-

tion and older FAs at the rear of the contractile module re-

leasing from the ECM, thus driving rapid, efficient cell mi-

gration. The FA size gradient would feed back to maintain

F-actin organization of the contractile module.

That a specific contraction:adhesion strength ratio can

produce this optimized FA morphometry and F-actin dy-

namic organization was directly demonstrated by enhanc-

ing myosin II activity at high adhesion strength (Figure 7).

We would predict that cells migrating under these condi-

tions would also have FAs with intermediate kinetics and

lifetimes. It will be interesting to determine whether the

phenotype we describe here as associated with rapid ep-

ithelial cell migration at intermediate adhesion strength is
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general for fast migration promoted by other stimuli or in

other cell types.

A specific level of myosin II activation per FA may also

promote fast FA component renewal within FAs (Figure 6).

Contraction could pull specific components that are struc-

turally linked to F-actin out of FAs, similar to how contrac-

tion is thought to drive clustering of integrins to promote

FA growth (Brunton et al., 2004). Indeed, we found that

av-integrin and vinculin rapidly turn over within FAs at in-

termediate adhesion strength. In surprising contrast, talin,

thought to be a load-bearing link between F-actin and b-

integrin, did not exhibit adhesion-strength-dependent

changes in turnover rates, suggesting that this link may

be critical to cell adhesion but not to migration velocity.

This model provides one possible explanation for the

adhesion-strength-dependent modulation of cell migra-

tion velocity considering only mechanical integration of

F-actin, myosin II, and FAs. It is well established that integ-

rin engagement induces activation of signaling pathways

affecting these cellular systems. For example, adhesion

strength modulates the activity of Rho family GTPases

and MAP, ERK2, and FAK kinases (Asthagiri et al., 1999;

Cox et al., 2001; Holub et al., 2003; Huttenlocher et al.,

1996). Modulation of ERK2 signaling could be responsible

for adhesion-strength-dependent modulation of myosin II

activation, while FAK and ERK could regulate FA disas-

sembly (Webb et al., 2004). Integrin-mediated activation

of Rac1 (del Pozo et al., 2003), a regulator of Arp2/3 and

ADF-cofilin in the lamellipodium, could mediate the adhe-

sion-dependent changes in F-actin that we observed.

These pathways could also feed back to adhesion

strength via inside-out modulation of integrin-ECM affinity

(Brunton et al., 2004). Mechanical regulation of signal

transduction occurs for Rho family GTPases (Katsumi

et al., 2002), induces conformational changes in proteins

to regulate ion channels (Hamill and Martinac, 2001),

and uncovers binding sites for adaptor and signaling pro-

teins (Tamada et al., 2004). Thus, it is likely that mechanics

and signaling are coupled or synergistic in mediating the

feedback between adhesion strength and F-actin, myosin

II, and FA dynamics to modulate cell migration velocity.

EXPERIMENTAL PROCEDURES

Cell Culture and Microinjection

PtK1 cells were plated for 12–16 hr before experiments in F-12 media

(Sigma) with 1% fetal bovine serum (GIBCO) on FN-coated #1.5 cov-

erslips prepared as described (de Rooij et al., 2005). Cells were micro-

injected with X-rhodamine-conjugated actin or plasmid DNA as de-

scribed (Gupton et al., 2005). GFP-av-integrin was coexpressed with

unlabeled b3-integrin. Cells were prepared for live-cell microscopy

as described (Gupton et al., 2005).

Adhesion Assays

To determine the relative number of adherent cells, experiments were

performed in quadruplicate as described (de Rooij et al., 2005). To

measure relative adhesion strength of PtK1 cells, a laminar flow system

was used to impose 250 dyn/cm2 shear stress as described previously

(Frangos et al., 1985). Briefly, cells were cultured overnight on 75 3 25

mm glass slides coated with FN. A silicone gasket was sandwiched
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between the glass slide and an acrylic plate to create a rectangular

flow channel (125 mm 3 1.0 cm 3 5.0 cm). Laminar flow was generated

using a fluid reservoir, peristaltic pump, and damper reservoir within

a 37ºC cabinet. The number of cells and cell islands at each FN con-

centration were counted before and after subjection to laminar flow.

Immunofluorescence and Immunoblotting

Cells were fixed and processed for immunofluorescence as described

(Gupton et al., 2005) using Cy2 secondary antibodies and Alexa 568

phalloidin for staining F-actin. Cells were lysed directly in sample

buffer, and immunoblots were developed with ECL (Amersham). Anti-

bodies were obtained from the following sources. pMLC: Dr. Y. Sasaki,

Kitasito University, Tokyo, Japan; myosin IIA heavy chain, Biomedical

Technologies, Inc.; phosphotyrosine and paxillin, Signal Transduction

Laboratories; human vinculin, Sigma; b1-integrin, Endogen.

Microscopy

F-actin FSM and phase-contrast time-lapse image series were ac-

quired at 5–10 s intervals using a 1003/1.4 NA Plan Apo phase objec-

tive lens (Nikon) on a spinning-disk confocal microscope (Adams et al.,

2003). GFP-paxillin images were acquired at 15 s intervals using the

same system. Leading-edge activity and cell migration rates were de-

termined from phase-contrast time series acquired on an inverted mi-

croscope system (de Rooij et al., 2005) using a 203/0.5 NA Plan Apo

phase objective lens (Nikon). For cell velocity, images were captured

every 2 min for 8 hr; for leading-edge characterization, every 10 s for

10 min. Epifluorescence images of fixed cells were acquired on an in-

verted microscope system (Wittmann et al., 2003) using a 603/1.4 NA

Plan Apo DIC objective lens (Nikon). FRAP was performed using a Del-

taVision RT microscope system equipped with a 50 mW Ar laser,

a 1003/1.4 NA Plan Apo phase-contrast objective lens (Olympus),

and a Roper Coolsnap camera or an inverted microscope (TE2000E

Nikon) in which the 488 nm line of a KrAr laser (2.5 W, Spectraphysics)

was introduced fiber-optically into a Nikon FRAP illuminator and im-

ages were collected with a 603/1.4 NA Plan Apo DIC objective lens

(Nikon) on a spinning-disk confocal scanner (Yokogawa) using a Ha-

mamatsu Orca ER camera. FAs were bleached by the laser focused

to a diffraction-limited spot; fluorescence recovery was imaged at

0.5–2 s intervals for 10 min.

Image Analysis

Leading-edge behavior and cell migration velocity were analyzed as

described (Gupton et al., 2005). F-actin flow rates were measured by

kymograph analysis (Waterman-Storer, 2002). Flow maps were pro-

duced with qFSM software (Ponti et al., 2004). The boundary between

zones was defined as sites of flow speed or direction change as seen

on kymographs. The lamellipodium/lamella border was delineated by

a negative flow-speed gradient, the convergence zone was the region

of zero F-actin flow velocity bounded by a negative flow-speed gradi-

ent on the cell-edge-facing side and a positive flow-speed gradient on

the cell-center-facing side, and the lamella was delineated by bound-

aries with the lamellipodium and the convergence zone.

F-actin polymerization and depolymerization maps were calculated

using qFSM software (Ponti et al., 2003; Vallotton et al., 2003). Fluores-

cence intensity line-scan measurements of F-actin, myosin IIA, and

pMLC were performed as described (Gupton et al., 2005). FA density

and area measurements were performed in Metamorph by threshold-

ing paxillin immunofluorescence images to include only FAs. All im-

ages were background subtracted prior to intensity measurements.

Ventral cell area was measured by tracing the outline of the phalloi-

din-stained cell. Quantification of FA dynamics was performed for im-

age series of GFP-paxillin as described (Webb et al., 2004). For analy-

sis of photobleaching recovery, the integrated fluorescence intensity

inside a region smaller than the original bleach region was recorded

in prebleach and recovery image series. Calculations of the percent re-

covery and t1/2 of recovery was performed as described (Bulinski et al.,

2001).



Statistical Analysis

For multiple conditions, we compared means by analysis of variance

(ANOVA). All data found to be significant by ANOVA were compared

with Tukey’s HSD or Fisher’s LSD (depending on the number of

groups) post hoc test to reveal statistically different groups. Statistical

differences between two conditions were determined using Student’s

t test.

Supplemental Data

Supplemental Data include three figures, two tables, and six movies

and can be found with this article online at http://www.cell.com/cgi/

content/full/125/7/1361/DC1/.
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