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ABSTRACT Fluorescent speckle microscopy (FSM) is becoming the technique of choice for analyzing in vivo the dynamics of
polymer assemblies, such as the cytoskeleton. The massive amount of data produced by this method calls for computational
approaches to recover the quantities of interest; namely, the polymerization and depolymerization activities and the motions
undergone by the cytoskeleton over time. Attempts toward this goal have been hampered by the limited signal-to-noise ratio of
typical FSM data, by the constant appearance and disappearance of speckles due to polymer turnover, and by the presence of
flow singularities characteristic of many cytoskeletal polymer assemblies. To deal with these problems, we present a particle-
based method for tracking fluorescent speckles in time-lapse FSM image series, based on ideas from operational research and
graph theory. Our software delivers the displacements of thousands of speckles between consecutive frames, taking into
account that speckles may appear and disappear. In this article we exploit this information to recover the speckle flow field.
First, the software is tested on synthetic data to validate our methods. We then apply it to mapping filamentous actin retrograde
flow at the front edge of migrating newt lung epithelial cells. Our results confirm findings from previously published kymograph
analyses and manual tracking of such FSM data and illustrate the power of automated tracking for generating complete and
quantitative flow measurements. Third, we analyze microtubule poleward flux in mitotic metaphase spindles assembled in
Xenopus egg extracts, bringing new insight into the dynamics of microtubule assemblies in this system.

INTRODUCTION

Extended polymeric structures such as the actin and

microtubule cytoskeletons are pervasive in eukaryotic cells.

They are in particular responsible for the generation of cell

polarity, movement, and morphogenesis, for organizing cell

division and cellular organelle transport, as well as for

ensuring cell mechanical integrity (Alberts et al., 2002). In

addition, defects in cytoskeletal function have been impli-

cated in many diseases, for example in vascular diseases

(Wesselman and De Mey, 2002), neuronal degeneration

(Brandt, 2001; Garcia and Cleveland, 2001), and cancer

(Condeelis et al., 2001; Thiery and Chopin, 1999).

When very low amounts of a fluorescent derivate of the

monomer forming actin filaments and microtubules (G-actin

and tubulin, respectively) are introduced into a living cell,

the cytoskeletal polymer assembled from the mixture of

endogenous and fluorescent monomers acquires a speckled

appearance in high-resolution, high-magnification fluores-

cence microscopy digital images (Waterman-Storer and

Danuser, 2002). The speckles correspond to diffraction-

limited regions where, statistically, more labeled monomers

have polymerized into the underlying structure than in the

immediate neighborhood. In time-lapse fluorescent speckle

microscopy (FSM), the movement and appearance/disap-

pearance of speckles act as local reporters for the trans-

location (i.e., flow), and assembly/disassembly (i.e.,

turnover) of polymer. Since the discovery of this effect

(Waterman-Storer et al., 1998), FSM has been applied in

various contexts, including: in vitro analysis of microtubule

treadmilling (Grego et al., 2001); in vivo studies of mitotic

spindles in cells and cell extracts (Maddox et al., 2000;

Waterman-Storer et al., 1998); the analysis of microtubule

transport along axonal shafts (Chang et al., 1999); inves-

tigations of the actin cytoskeleton dynamics in stationary and

migrating cells (Watanabe and Mitchison, 2002; Waterman-

Storer et al., 2000b); the dynamic relationship of the actin

and tubulin cytoskeletons (Gupton et al., 2002; Salmon et al.,

2002; Schaefer et al., 2002; Waterman-Storer et al., 2000a);

and the study of microtubule-associated proteins (Bulinski

et al., 2001; Kapoor and Mitchison, 2001; Perez et al., 1999).

There are at present no techniques besides FSM having

a similar potential to deliver dynamic information on cy-

toskeletal flow and turnover activities over extended areas

of the cell. FSM, however, is still in its infancy. A particular

challenge consists in the complexity and sheer volume of the

data. In time-lapse FSM image series, thousands of weak

contrast speckles exhibit movement. Also, new speckles may

pop up unexpectedly or speckles can disappear at any time.

Speckle appearance and disappearance can potentially be

exploited to analyze local polymer turnover, but they in-

terfere heavily with our ability to recover flow information.

The relationship existing between the true, continuous flow

of the viscoelastic cytoskeletal media and a set of time-lapse

speckle images, perturbed by the various effects enumerated
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above, is far from trivial. Hence, we use the term ‘‘flow

recovery’’ throughout this contribution.

FSM of filamentous actin flow at the leading
edge of migrating cells

Migrating cells in culture are polarized, with a broad flat

lamellum that terminates in a ruffling lamellipodia facing the

direction of migration (the leading edge). A meshwork of

actin polymerizes at the leading edge and flows retrogradely

toward the cell body (Wang, 1985). The nucleation and

growth of actin filaments (F-actin) into a cross-linked and

branched meshwork is thought to drive forward protrusion of

the cell membrane (Mogilner and Oster, 1996), whereas

retrograde flow, if coupled to substrate adhesion, is thought

to generate lamellipodial traction.

Recently, we proposed a computational framework for the

analysis of F-actin turnover in nonmigrating, contact-inhib-

ited cells (Ponti et al., 2003), where the leading edge F-actin

assembly and retrograde flow are shut down. Nevertheless,

FSM movies of such cells still showed a photometric activ-

ity of fluorescent speckles in the nonmoving cortical ac-

tin, indicating that F-actin is undergoing steady turnover

(Waterman-Storer et al., 2000b). The algorithm relied on the

statistical evaluation of speckle intensity fluctuations coupled

with speckle appearance and disappearance.

In the present contribution, we address how speckle

movements can be exploited to map the retrograde F-actin

flow in a migrating cell. The task is complicated by the high

variability of the speckle signal, which is typically near the

noise level of the imaging system, and by the presence of

speckle sources and sinks, associated with either regions of

polymerization and depolymerization, or contractile centers

formed by myosin motor proteins. Such singularities are

clearly visible in the results produced by our new tracker. We

are also able to confirm findings concerning the organization

of F-actin flow in migrating newt lung epithelial cells, which

were up to now only inferences from sparse kymograph

analyses on small data sets. Finally, we show that significant,

coherent changes in the flow pattern can occur on a timescale

of seconds; a result that is not surprising considering the

ability of motile cells to respond remarkably rapidly to

changes in their environment.

FSM of poleward microtubule flux in
mitotic spindles

Another exciting application of FSM is the study of

microtubule dynamics in the mitotic spindle. This is

a complex machine composed of two polar arrays of

microtubules, motor proteins, and other molecules (Karsenti

and Vernos, 2001; Wittmann et al., 2001). During mitosis,

the spindle assembles around the duplicated chromosomes

and distributes them equally to the daughter cells. Each of

the two spindle poles initiates the growth of microtubules

that overlap to form the central spindle. Growth occurs at

microtubule plus ends oriented distal from the poles. Some

overlapping microtubules form bundles of interpolar spindle

fibers (cf. also Fig. 6 A). A second class of bundles link

chromosomes to the spindle poles. The plus ends of these

microtubules attach to the centromeric DNA via a specialized

organelle, known as the kinetochore (Bloom, 1993). At

metaphase, chromosomes become aligned at the spindle

equator with kinetochore bundles symmetrically extending

from sister chromatids toward the corresponding pole. The

mitotic checkpoint senses the bipolar attachment for all pairs

of sister chromatids and regulates the onset of anaphase,

when sisters separate and are moved by their kinetochore

microtubule bundles to opposite poles.

A major dynamic aspect of microtubule assembly in the

spindle is a steady poleward flux of microtubules toward

their poles that occurs at the same rate as minus end

depolymerization (Mitchison, 1989; Mitchison and Salmon,

1992; Sawin and Mitchison, 1991). At metaphase, the net

rate of polymerization at plus ends equals the flux rate and

the spindle achieves a constant steady-state length. Flux

may be produced by microtubule treadmilling mechanisms

(Margolis and Wilson, 1991) or driven by one or more of the

many microtubule motors associated with the spindle (Desai

et al., 1998; Kapoor and Mitchison, 2001; Mitchison, 1989).

Flux appears important for aligning chromosomes at the

spindle equator during metaphase and for generating the

tension required to inactivate the spindle checkpoint (Kapoor

and Compton, 2002). In anaphase, polymerization at ki-

netochores mostly ceases and flux can make a major con-

tribution to the movement of chromosomes to their poles

(Desai et al., 1998; Maddox et al., 2000).

Although microtubule flux is now easily visible with time-

lapse FSM (Waterman-Storer et al., 1998), most of the

information captured by such movies has remained un-

exploited because of a lack of appropriate data processing

tools. Indeed, analyzing the kinematics of poleward micro-

tubule flux in mitosis is particularly challenging because of

the complex and densely interleaved, antiparallel motion of

fluorescent speckles associated with the two opposing and

overlapping bipolar arrays. Hence, flow recovery has to be

achieved at the level of single speckles. Each speckle is

treated as a local reporter of microtubule flux, independent of

any other speckle in the neighborhood. Ambiguities during

tracking are the rule rather than the exception, and

a framework able to resolve these conflicts for thousands

of speckles simultaneously has to be used. As with FSM of

actin, a speckle tracker has to cope with disappearances and

the formation of new speckles. These demands exceed the

capability of any existing single-particle tracking method,

justifying the developments presented in this contribution.

Scope of the article

In this article we present the first results obtained with our

novel single-particle tracking algorithm. The software pro-
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ceeds in four steps: i), particle generation, i.e., the selection

of significant speckles; ii), generation of candidate matches,

i.e., a set of possible speckle displacement vectors between

successive frames; iii), scoring of candidate matches based

on rules defining the variability of speckles in position and

intensity—probable matches get high scores, improbable

ones get low scores; and iv), selection of the candidate subset

with maximum global score and no topological ambiguity,

i.e., none of the speckles is allowed to participate in two

trajectories. In the current state, the program delivers the

displacements of thousands of speckles between consecutive

frames while coping with the unexpected appearance and

disappearance of speckles. The algorithm can also deal with

antiparallel motion of proximate speckles. This allows us

not only to quantify the interleaved flux fields of bipolar

spindles, but also to resolve shear flow in contraction areas of

actin meshworks.

An obvious next use of the speckle tracker will be to

combine displacement data with appearance and disappear-

ance data to calculate trajectories for every speckle and to

perform speckle lifetime analysis for moving polymers in the

manner we have shown for spatially stationary F-actin

assemblies (Ponti et al., 2003). This development is currently

under way. Here we focus on the recovery of flow fields

from the tracking data. Detected displacement matches are

averaged in space and time to map the overall polymer

transport, reducing the effect of various random displace-

ments superimposed at the single speckle level.

To demonstrate the power of the data from the tracker for

future applications of quantitative FSM, we include various

statistical analyses of the bipolar speckle flow within the

spindle. In particular, the classification of speckles with

respect to their direction of movement reveals the spatial

distribution of the two overlapping microtubule subarrays.

This is a piece of information hitherto inaccessible and

prototypical of what can now be systematically examined

with single speckle tracking. We also obtained measure-

ments indicating that flux is slower for kinetochore micro-

tubules than for non-kinetochore microtubules. We interpret

this heterogeneity as the result of tension at kinetochores.

Such findings augur a new era in the exploitation of FSM

data for quantitative cytoskeleton biology.

MATERIALS AND METHODS

FSM of actin in migrating newt lung epithelial cells

Primary cultures of epithelial cells were established on 223 22 mm No. 1.5

coverslips from Taricha granulosa lung tissue and maintained in Rose

Chambers as previously described (Rieder and Hard, 1990). X-rhodamine-

labeled chicken skeletal muscle actin was prepared as described (Waterman-

Storer, 2002). Migrating cells at the edge of the epithelial sheet that extends

from the lung explant were microinjected with 1 mg/ml X-rhodamine

G-actin in G-buffer (2 mM Tris, 0.2 mM CaCl2, 0.2 mM MgATP, 0.5 mM

b-mercaptoethanol, pH ¼ 8). After microinjection, cells were allowed to

recover for 1–2 h in the dark before being mounted on slides with double

stick tape in culture media containing 0.3–0.6 U/ml Oxyrase (Oxyrase,

Mansfield OH) to inhibit photobleaching during imaging. Digital images

were obtained at 10-s intervals with a 12-bit Hamamatsu C-4880 camera

containing a Texas Instruments TC-215 charge coupled device (with 12 mm2

pixels) cooled to –408C on the multimode microscope described in (Salmon

et al., 1998) using a 603, 1.4 NA objective, a 1.253 body tube magnifier,

and a 1.53 optavar and epifluorescence filters for X-rhodamine. Excitation

illumination was blocked between camera exposures with an electronic

shutter.

FSM of mitotic spindle in Xenopus eggs extracts

Metaphase spindles with replicated mitotic chromosomes were assembled in

meiotic Xenopus egg extracts as described (Desai et al., 1998; Murray et al.,

1996; Waterman-Storer et al., 1998). For FSM of microtubules, a low level

of X-rhodamine-labeled tubulin was introduced into the Xenopus egg

extracts before spindle assembly, and FSM was performed as described

(Waterman-Storer et al., 1998) by wide field microscopy using a Nikon

(Melville, NY) E600 upright microscope equipped with a 603, 1.4 NA

Plan-Apochromat bright field objective lens with no intermediate magnifi-

cation and a multiple bandpass dichromatic filter that allowed sequential

acquisition of blue (DAPI stained chromosomes) and red (X-rhodamine-

labeled tubulin in microtubules) fluorescent images in register on the

detector of a Hamamatsu Orca 1 cooled charge coupled device camera.

Metamorph software (Universal Imaging, West Chester, PA) was used to

control illumination through a dual filter wheel (excitation wavelength and

intensity) and shutter, specimen focus via a stepping motor (Nikon), and

image acquisition. Pairs of fluorescence images were collected at 10-s

intervals with exposure times of 500 ms.

ALGORITHM

Signal preconditioning

Because the resolution of optical microscopes is limited to

;250 nm due to diffraction, signals displaying significant

variations over distances shorter than this limit must

originate from noise of e.g., electronic origin. This noise

can be removed without compromising the speckle signal by

low-pass filtering every image with a Gaussian convolution

kernel of a full width at half maximum equal to 250 nm,

expressed in pixel dimensions (Ponti et al., 2003). Note that

speckles represent the diffraction-limited image of a random

distribution of fluorophores. Thus, the pattern does not

contain significant spatial frequencies beyond the optical

cutoff, i.e., our low-pass filter strictly suppresses noisy

features only. Omitting this preconditioning, the number of

local intensity maxima in the image, later identified as

potential speckles, would be much higher. Moreover the

apparent movement of the noisy features removed would

bear no connection with the physical flow.

Particle generation

In particle-tracking methods, the complexity inherent to an

image is condensed into a set of discrete features with

associated properties. Here, these properties are the speckle

coordinates and their intensities. We generated these
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particles from the images by applying a local maximum

detector, such that a particular pixel is detected as amaximum

whenever its intensity is higher than every pixel around it.

Each particle was stored in an array, containing the co-

ordinates and the corresponding intensities.

Particle selection

Particles produced up to this point are still likely to be the

result of noise. In the preconditioning step, we have only

suppressed noise components corresponding to spatial

frequencies higher than the diffraction limit. The compo-

nents with spatial frequencies below this limit are still present

and interfere with the speckle signal. Thus, a further selec-

tion is performed. We apply a statistical selection scheme to

only keep those speckles (here, particle and speckle are

equivalent terms), whose peak intensities are significantly

higher than the local background intensity. Details on how

we estimate the local background of each speckle and howwe

test the significance of peak intensities against noise are

described in Ponti et al. (2003).

Generation of candidate matches

Over time, speckles move continuously along with the

intracellular cytoskeletal flow. Because time-lapse images

deliver only discrete snapshots of this flow, speckles in one

frame have to be reidentified in the consecutive frame.

Because speckles can appear, disappear, fuse, and split, this

correspondence search is far from trivial, even at high image

sampling rates. The speckle flow has a finite maximum speed

over the duration of an FSM movie. Together with the

sampling rate, this defines the maximum displacement d that
a speckle can undergo from one frame to the next. It is fairly

easy to visually estimate an upper limit for this distance.

Omitting the use of this a priori information, the number of

potential matches to consider would be overwhelmingly

large. Hence, for each speckle, we store every neighboring

speckle within the distance d in an array M, such that each

row of this array consists of the two position vectors [rk,
rk11], with rk ¼ [rk,x, rk,y]. Here, rk denotes the position of

a source speckle in frame k, and rk11 denotes the position of

a potential target speckle in the frame indexed by k 1 1.

Selection of matches

The essence of particle-tracking methods is that particles are

indivisible and that they retain their individuality even when

they come very close. In that sense, the notion of a particle

does not capture every aspect of a speckle because nothing

prevents two speckles from fusing in an FSM sequence. This

happens particularly in regions of flow convergence, where

speckles are squeezed into a volume below the optical

resolution of the microscope, compelled to do so, for ex-

ample, by cytoskeleton contraction.

However, by analyzing some sample data manually, it

appeared that fusion or splitting of speckles were rather rare

events in the polymer assemblies we studied. Moreover,

ignoring fusion and division allowed us to use a standard

method from operational research to recover the speckle

correspondences between frames. Specifically, the corre-

spondence search selects a subarray of M such that:

a. A source speckle at time k is matched with at most one

target speckle at time k 1 1.

b. A target speckle at time k 1 1 is matched with at most

one source speckle at time k.
c. The matches are selected according to heuristic rules,

describing the a priori likelihood of potential actions of

speckles between consecutive frames.

Condition c determines the quality of particle-to-particle

correspondence, and thus imposes local constraints on the

selection of matches. Items a and b formulate conditions for

the global topology of all matches. Whereas many particle-

tracking systems employ some sort of similarity measure to

define the correspondence, they resolve topological conflicts

at best with an ad hoc scheme. Topological conflicts occur,

for example, when two speckles in frame k would have their

best match with the same speckle in k 1 1, violating rule

a above. In this case, the algorithm has to decide which of the

two is permitted to link to the overbooked target speckle, and

how the losing speckle reparticipates in the competition for

another speckle.

Another example of a topological conflict is illustrated in

Fig. 1 A. Three speckles, indexed by r1,k, r2,k, and r3,k,
translate to their new positions, indexed by r1,k11, r2,k11,

and r3,k11. Frequently, particle tracking methods use

FIGURE 1 Applying graph concepts to tracking problems. (A) Speckles
at time point k (small circles), move to new positions (squares) at time point

k1 1. (B) Translation of candidate matches into edges of a graph that defines

all possible topologies for linking the speckles. In terms of graph theory,

speckles represent vertices arranged in two layers. Only those matches are

considered that fall into the search area of the corresponding speckle (dashed

circles in A). Costs equal to the distance separating speckles are attached to

the graph edges (numbers in regular font). Capacities of edges are all equal

to one (first number in italic font). Not more than one unit of flow can leave

from any of the source vertices or flow into a target vertex. Pushing

a maximum amount of flow through the graph at minimal cost yields the

matches selected by the tracker. In the case shown, the correct solution is

chosen (edges with an effective flow 1, see second number in bold italic

font), at a cost of 29. A nearest-neighbor matching scheme would result in

a cost of 9, but would violate the condition of maximum flow.
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a nearest-neighbor criterion to describe the quality of

a match. In the example given, r2,k would therefore be

linked to r1,k11, and r3,k to r2,k11, whereas r1,k and r3,k11

would have no correspondents in frame k 1 1 and k,
respectively. This would represent a false speckle disap-

pearance and appearance, and more critical for flow rec-

overy, would yield the wrong selection of matches.

In the following, we propose a solution to this challenging

tracking problem, using the terminology and methods of

graph theory (Sedgewick, 2002). Speckles are identified with

graph vertices and candidate matches with graph edges.

Different time points correspond to separate graph layers,

and the matching topology is defined by a subgraph in which

the edges connect corresponding speckles. We explain the

computation of the ‘‘best’’ subgraph first for the simple

example in Fig. 1 A, which can be translated into a two-layer
graph. Then, we indicate the weaknesses of the two-layer

approach, mainly in presence of antiparallel speckle move-

ments, and outline the extension of the method to a three-

layer graph.

Tracking with two-layer graphs

The relation between speckles (circles for frame k, squares
for frame k 1 1) and candidate matches (arrows), and their

representation as graph vertices and graph edges, respec-

tively, are illustrated in Fig. 1, A and B. The speckles r2,k and
r3,k have two candidate matches within their search areas

(defined by the dashed circles with radius d). Thus, in the

corresponding graph (Fig. 1 B), two edges start from each of

these positions. For r1,k, only one vertex in frame k1 1 falls

into the search area, and accordingly, only one edge leaves

the corresponding vertex in layer k. Notice that the limitation

of candidate matches to a certain search area reduces the

graph complexity and thus the computation time. This is

critical when running the procedure on thousands of

speckles. As long as the areas enclose the maximum

expected displacement of a speckle, this restriction has no

effect on the final solution. Each graph edge is attributed an

integer capacity that represents the maximum flow that can

be transferred across a single edge (the use of the term flow in

graph theory is unrelated to the cytoskeletal flow we aim at

recovering with the tracking). In our graphs, each edge has

a capacity 1 (cf. first italic number assigned to each edge of

the graph in Fig. 1 B). Graph edges are also attributed a cost,
reflecting the likelihood of the candidate match. In the

example of Fig. 1, we simply assign the vector length of

the match, rounded to an integer value, as a cost to the edge

(cf. regular numbers assigned to each edge of the graph in

Fig. 1 B).
According to graph theory, optimal matches with no

topological conflicts are obtained by maximizing the flow

crossing the graph, while minimizing the overall cost. The

latter is calculated as the sum of the cost of all edges

multiplied by the flow crossing them. Algorithms to achieve

this are available either commercially or in the public domain

(Goldberg, 1997; Sedgewick, 2002). In Fig. 1 A, the

requirement of maximum flow forces the solution to the

correct topology. The overall cost of the solution amounts to

101 111 8¼ 29. Although there are many other subgraphs

with lower cost, including the nearest-neighbor match,

associated with a cost of 5 1 4 ¼ 9, none of them sustains

the maximum flow of 3. The requirement of minimal cost

and maximum flow yields an optimal solution to the

assignment problem.

For any particle tracker, the appearance and disappear-

ance of particles represent major sources of perturbation for

the reliable recovery of particle motion. This is how this

problem is addressed in the presented scheme: The optimal

subgraph is selected in a two-step procedure. First, a so-

called network flow algorithm is run, followed by a so-

called mincost algorithm. The outcome of the network flow

algorithm is a configuration of edges, each one assigned an

effective flow value (cf. bold italic number in Fig. 1 B). In
our case the effective flow values are either 0 or 1. In terms

of graph theory, this means that edges are either empty (0)

or full (1). Full edges now define the topology of a subgraph

that maximizes the flow across the entire graph. They

connect a source speckle in frame k with a target speckle in

frame k 1 1, whereas empty edges represent candidate

matches discarded by the network flow algorithm because

of a violation of the topological constraints. Importantly,

not more than one unit of flow can leave from any of

the vertices in layer k, or flow into a target vertex in layer

k 1 1.

The search for maximum flow is ambiguous. The larger

the graph, the more subgraphs exist that can sustain the

maximum flow. Which of those is associated with the best

matches is determined by the mincost algorithm. It uses the

output graph of the network flow algorithm as an initial

solution and seeks other subgraphs with the same flow but

lower overall cost. The final subgraph returned by the

mincost algorithm again labels the selected speckle matches

with an effective flow 1, the others with an effective cost 0.

Notice that the subgraph may or may not be equal to the

initial one obtained by the maxflow algorithm. In the

example of Fig. 1 B, there is obviously no reassignment of

edge flows, as there is only one solution supporting the

maximum flow of 3.

Given the output of the combined maxflow and mincost

algorithms, speckle appearances and disappearances are

readily found. Disappearing speckles correspond to vertices

in layer k for which no edge leaves with an effective flow 1.

Speckle appearances correspond to vertices in layer k1 1 for

which no edge arrives with an effective flow 1. These

considerations will become central in the future when we

make a detailed speckle lifetime analysis, but they are not

critical here. For the scope of this article, it is sufficient that

the matches used for flow recovery are minimally perturbed

by speckle appearances and disappearances.
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Tracking with three-layer graphs

In the case of speckles moving in antiparallel flows, the

recovery of correct matches is particularly difficult. Fig. 2 A
displays the result of a two-layer graph algorithm run on

data comprising two interleaved, rotating flow fields with

opposite directions of rotation. The match selection fre-

quently fails in areas with proximate antiparallel trajectories.

To enhance the tracking performance, we modified our graph

to be able to exploit the information contained in three frames

simultaneously. This allowed us to exploit the notion of

trajectory smoothness. Such heuristics have proved very

powerful for solving the motion correspondence problem in

other contexts (Veenman et al., 2001). Following (Sethi and

Jain, 1987), we express the cost of a candidate match as

c ¼ g1 1� ðrk � rk�1Þ � ðrk11 � rkÞ
krk � rk�1k3 krk11 � rkk

� �

1 g2 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krk � rk�1k3 krk11 � rkk

p
krk � rk�1k1 krk11 � rkk

" #
:

(1)

The first term is equal to zero for displacement vectors that are

aligned, whereas the second term is zero for displacement

vectors whosemagnitude does not change over time. The sum

of the two terms is therefore a measure of trajectory smooth-

ness over three frames. Theweights g1 andg2 tune the relative

contribution of changes in direction versus changes in

magnitude. Although Sethi and Jain (1987) proposed

g1 ¼ 0:1 and g2 ¼ 0:9, we found that for our application,

weight factors of 0.4 and 0.6 yielded better results.

With the cost function of Eq. 1, we do not only introduce

a third graph layer, but the costs of the edges between the

layers k and k 1 1 are now coupled to those of the edges

between the layers k � 1 and k. This requires a nonstandard

restructuring of the graph, which will be discussed in a more

dedicated publication. Here we confine ourselves to

demonstrating the improvement in tracking performance.

Fig. 2 B shows the same flow field as Fig. 2 A, but now
tracked with a three-layer graph. With the exception of two

false matches (red arrowheads), the algorithm returns the

correct solutions. We highlight three locations (green
circles) where antiparallel trajectories are particularly close.

As evident in Fig. 2 B, the algorithm cannot guarantee the

selection of all matches. This will have to be improved for

complete lifetime analysis but is irrelevant for the flow

evaluation aimed at in this contribution. As explained in the

paragraph ‘‘Flow Recovery by Filtering and Interpolation’’

below and the Results section, missing matches do not affect

the reconstruction of flow fields.

Nevertheless, to maximize the number of matches and to

make the selection as robust as possible, the cost function

should incorporate as much prior knowledge of the speckle

action between consecutive frames as available. A further

information we have is that speckles largely conserve their

intensity. Therefore, we seek matches with minimal variation

in speckle intensity. To achieve this, the term 0:23 ½sXðIÞ=�II�
was added to the cost c in Eq. 1, where sXðIÞ is the standard
deviation of the intensities of the speckles at rk�1, rk, and
rk11, and �II is the mean intensity over all three frames:

c ¼ 0:4 1� ðrk � rk�1Þ � ðrk11 � rkÞ
krk � rk�1k3 krk11 � rkk

� �

1 0:6 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krk � rk�1k3 krk11 � rkk

p
krk � rk�1k1 krk11 � rkk

" #

1 0:2
sXðIÞ
�II

� �
: (2)

FIGURE 2 Tracking antiparallel flow. (A) Difficulties encountered with tracking antiparallel flow using a two-layer graph. (B) Improvement of the

performance using a three-layer graph, which can account for the smoothness of speckle trajectories. See text for a discussion of the highlighted areas. (C)
Illustration of the selection process in real data exhibiting antiparallel flow (FSM data of bipolar microtubule flux in a mitotic spindle, Fig. 6). Solid black

vectors are candidate matches between frame k and frame k1 1, dotted black vectors are those between frame k1 1 and frame k1 2. The algorithm associates

solid vectors with dotted vectors to form trajectories linking speckle positions at time k, k 1 1, and k 1 2, such that the overall cost of the selected paths is

minimal. According to the cost function in Eq. 2, the algorithm tends to select smooth trajectories with minimal speckle intensity variation. The red vectors

indicate the matches selected by the algorithm. In agreement with the bipolar flux arrays, they outline a densely interleaved antiparallel flow (see, for example,

the trajectories indicated by labels 1 and 2, pointing toward the upper and lower spindle poles, respectively).
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Fig. 2 C shows an example of the graph selection process

on real data. We present a zoom-up of a small region near

one pole of the mitotic spindle, analyzed in more detail in

the Results section (see frame of inset B-I in Fig. 6 B).
Here, speckles mark an interspersed scaffold of micro-

tubules, which flow in opposite directions. The panel

displays candidate matches shorter than the radius (d ¼ 10

pixel) of the circular search region centered at each of the

speckles of frame k. Candidates between the frames k � 1

and k are shown as solid black vectors; those between k
and k 1 1 as dotted black vectors. According to the

explanations above, the goal of the graph selection

algorithm is to optimally pair solid vectors with dotted

vectors. The possible combinations of vectors are bewil-

dering, even for the very small example shown. The red

vectors indicate the selected matches. As the region under

scrutiny is near the upper spindle pole, the majority of

matches points in the direction of the pole, located above

and to the right of the zoom-in window (see green arrow).
Most of the remaining matches point in the opposite

direction indicating that these speckles belong to long

microtubules reaching into this area from the opposite pole.

We will revisit this phenomenon in the Results section with

more emphasis on the biological significance. For now, we

remark that e.g., the two antiparallel vector pairs,

highlighted by the blue labels 1 and 2 in Fig. 2 C, are
only 6 pixels apart, which is in the range of the actual

speckle displacements. A global resolution of topological

conflicts, as it is achieved with the proposed selection of

matches using graphs, is essential to cope with such

a densely interleaved antiparallel flow.

Relaxing the condition of nonfusing and
nonsplitting speckles in a next version
of the tracking scheme

Despite our finding that fusion and splitting are relatively

rare, we aim at overcoming this limitation of the current

scheme (see above) with a future version. Fusion and

splitting of speckles can be addressed in two ways: i), by

relaxing conditions a and b, which demands a restructuring

of the graph such that multiple edges with an effective flow

equal 1 can leave a vertex in layer k, and vertices in layer

k 1 1 can receive several edges with an effective flow equal

1. For graphs with thousands of vertices per layer this

procedure will be ambiguous and computationally not

affordable; ii), by resolving signal overlaps during particle

generation. This bears the advantage that the graph structure

is unaffected and all the core modules of the current software

package are applicable without modifications. Near coloca-

tion of two or more significant speckles can e.g., be resolved

by mixture model fitting (Thomann et al., 2002). As a result,

several speckle positions and intensities are obtained for

what is currently detected as only one local maximum. This

procedure will also be computationally expensive, but in

contrast to the restructuring of the graph, it can be im-

plemented in a framework for parallel computing.

Flow recovery by filtering and interpolation

As mentioned in the Introduction, the first utilization of the

extracted matches consists in the reconstruction of speckle

flow. Because speckle intensities and positions are stochastic

variables subjected, among other effects, to the influence of

thermal fluctuations (Ponti et al., 2003), their displacements

are only in a statistical sense related to the underlying

average cytoskeletal flow. Flow recovery is therefore

achieved by spatial filtering of the map of matches delivered

by the graph algorithm, using convolution. At the same time,

we obtain interpolated flow on a regular grid, which mainly

serves the purpose of flow visualization. In addition to spatial

filtering, steady-state flow components are retrieved by

filtering the maps of matches in time.

The amount of filtering is determined by the spatial and

temporal correlation lengths of the filter. In our case, we

chose an isotropic Gaussian convolution kernel in space,

multiplied with another Gaussian in the time domain,

describing the correlation of flow between any two frames

of the movie. In the current version of the software, the

correlation lengths are set globally, i.e., the same lengths are

applied throughout the entire field of view for all frames.

They are tuned by the operator based on an educated guess.

Obviously, the parameter choice depends on the focus of

the study, and thus on some prior knowledge of the flow

structure. For example, if an average, global measure of

cytoskeletal motion is to be obtained, the spatial and

temporal correlation lengths ought to be set relatively large,

e.g., in the range of the persistence length of the studied

polymer (;1–2 mm for actin). On the other hand, if flow

needs to be studied around a pole in the vector field, e.g.,

associated with an area of meshwork contraction or

depolymerization, the correlation length has to be lowered

to pick up the details. This is, of course, done at the risk of

including more random components, which are unrelated to

the meshwork flow into the pole.

In future versions of the software, we will relax the need

for operator input. Prior knowledge of the flow structure can,

for example, be extracted from the flow field itself.

Borrowing ideas from edge-preserving filtering in computer

vision, a filtering framework will be implemented where

the correlation lengths are iteratively adjusted to the local

convergence or divergence of flow. This will permit the

combined recovery of global flow in areas of coherent

speckle movement and of details of poleward or shear flow in

areas with singularities in the movement field. Alternatively,

the computation of correlation lengths can be supported with

a mechanical model of the cytoskeleton. Initial tests with

such approaches deliver promising results. However, their

discussion goes beyond the scope of this article and we

confine the presentation of results to flow fields computed
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with one globally and manually defined set of correlation

lengths.

An application where global filtering is inappropriate

arises with the densely interleaved antiparallel tubulin flow

present in the mitotic spindle. Here, global filtering would

result in vectors of zero length approximately everywhere. In

this case, the algorithm starts with a sorting procedure before

filtering, where matches pointing toward one pole are

separated from those pointing to the opposite pole. This

operation is straightforward and robustly performed without

further user interaction (see Results and Fig. 6 B).

RESULTS AND DISCUSSION

The scope of this section is to demonstrate the potential of

our new single speckle tracker to extract flow information in

different situations. We present three types of data: i),

Simulated flow fields where artificial particles are tracked

and the recovered matches are compared with the known

displacement vectors. ii), The speckle flow at the front edge

of a migrating cell is analyzed to indicate the power of

computational FSM to unravel the dynamics of lamellipodial

and lamellar F-actin meshworks. Intentionally, we perform

our study on FSM data already published and manually

analyzed to point out the gain of high-content information

achieved with our new computational schemes. iii), Speckle

flow representing interleaved microtubule flux in mitotic

spindles is analyzed to emphasize the ability of our tracker to

cope with antiparallel movement. In addition, the spindle

data is attractive to demonstrate the new possibilities we

obtain with the wealth of quantitative information we can

now extract. We present two statistical population analyses

of single speckle matches that provide novel insights of the

microtubule organization and dynamic behavior inside the

spindle.

Performance analysis on simulated flow fields

Data of the type ‘‘peas in a rotating dish’’ are traditionally

used for testing tracking approaches and we have adhered to

this practice here. For such data, the magnitude of the

displacement depends heavily on the position, a feature

shared with data from biological samples. We have gen-

erated at time point k a spatially random planar distribu-

tion of particles with random intensities. In the following,

we always mean ‘‘obeying a uniform distribution’’ when

we say ‘‘random’’. Then, these particles were twice sub-

jected to a rotation of 38 to generate the particles at time point

k 1 1 and at time point k 1 2. The particle sets were

distributed over an area of 200 3 200 pixels and the first

frame contained;200 particles. From one frame to the next,

random intensity variations with a maximum of 0.5 times the

intensity of the corresponding particle in the previous frame

were imposed. These variations are significantly above those

we could observe for real data and therefore constitute

a demanding benchmark for the tracker. The parameters

mentioned above were applied to all simulations, except

when explicitly stated otherwise.

The quality of tracking was measured as the proportion

between false matches and the number of recovered matches.

As a rule of thumb, error rates below 20% do not seriously

affect flow recovery and thus are acceptable. The average

density of speckles in real FSM images generally guarantees

five matches or more falling into the support area of the

convolution kernel applied for flow filtering and interpola-

tion. Consequently, with an error rate of 20%, one out of five

matches would deteriorate the convolution as an outlier.

Since the correspondence search area is limited to the user-

defined radius d, the magnitudes of outlier matches are also

limited. In a strict mathematical sense, this moves the break

point of the convolution to infinity (Rousseeuw and Leroy,

1987). In practical terms, this means that, in the worst case,

filtered and interpolated flow vectors near outlier matches are

biased by d/5.
In the same spirit, missing matches do not need to be

counted as errors as they do not contribute to the recovery of

filtered flow. Unless stated otherwise, the number of matches

recovered was above 90% for all of the following tests on

synthetic data.

Influence of positional fluctuations

In real data, speckle trajectories are perturbed by various

effects, including thermal fluctuations, local cytoskeleton

contractions, and positional fluctuations due to photometric

changes (see Ponti et al., 2003, for a discussion of these

effects). Hence, we have evaluated the influence of posi-

tional fluctuations by subjecting the speckles in every frame

to random perturbation displacements of variable mean.

The proportion of mistakes committed by the matching

algorithm changed from 1.8% 6 0.75% to 5.3% 6 1.6% (n
¼ 3), when progressively increasing the maximum pertur-

bation displacement from 0 to 3 pixels imposed indepen-

dently on both image directions.

Influence of particle appearance
and disappearance

We have also evaluated the influence of speckle appearance

and disappearance, which in real FSM data is associated with

polymer turnover (Ponti et al., 2003). We ran separate tests

for appearance and disappearance. To mimic appearance,

new particles with random intensities were added to the

particle sets in time point k 1 1 and k 1 2 at random

positions. The rate of appearance is expressed as the number

ratio between new particles and existing particles in the

previous time point. To mimic disappearance, a certain

fraction of existing particles were randomly deleted from the

sets in time point k1 1 and k1 2. The rate of disappearance

is expressed as the number of particles removed, divided by
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the number of particles present before their elimination in the

next frame.

The proportion of mistakes committed by the algorithm

when varying the appearance rate from 0% to 80% increased

progressively from 1.8%6 0.75% to 11.5%6 2.7% (n¼ 3);

the one associated with disappearance rates between 0% and

60% from 1.8% 6 0.75% to 2.5% 6 0.5% (n ¼ 3). These

results indicate that the tracker performs robustly in the

presence of this type of perturbation.

Influence of the magnitude of the displacement

To examine the performance of the tracker as a function of

the mean displacement, we varied the rotation angle from

08 to 78. The results clearly depend on the density of

particles, so the latter was kept constant. In these simulations,

the search distance d for candidate matches (see paragraph

‘‘Generation of Candidate Matches’’ in Algorithm section)

was set to the maximum displacement across the images. The

proportion of mistakes committed by the algorithm when

going from 08 to 78 increased progressively from 1.8% 6

0.75% to 9.7% 6 3.7% (n ¼ 3).

Influence of antiparallel flow

Antiparallel flow is a distinctive characteristic of the mitotic

spindle or of contracting actin/myosin assemblies. Hence, we

tested our algorithm on a data set where two sets of particles

were rotating in opposite directions. This was done by

superposing two sets of data of the type used up to this point,

where rotations were taking place in opposite directions (the

total number of particles in each frame was ;400). The

results are shown in Fig. 3 A, and indicate that the tracker is

not confused excessively with shear flow. The figure inset

points at one of three particle clusters, where errors occur in

the selection of matches.

Fig. 3 A shows the recovery without perturbation from

displacement fluctuations, particle appearance, or disappear-

ance. We have also tested the influence of these parameters

in the presence of shear flow (results not shown). To our

surprise, the results were similar to those presented before

with only parallel flow.

Influence of various effects
applied simultaneously

Ultimately, a speckle tracker has to deal with multiple

sources of perturbation simultaneously. To conclude these

simulations, we show one example of flow estimation where

FIGURE 3 Performance tests of the algorithm using synthetic data sets.

(A) Tracking of two interleaved and antiparallel flow fields of;200 particles

each, rotating at an angular velocity of 38 per frame. Particles belonging to

the first, second, and third frame are represented by black, blue, and red

circles, respectively. The recovered matches are indicated by arrows

connecting the particles. The inset shows a region containing matching

mistakes. Speckle intensity variations are also used for selecting the

trajectories, sometimes leading to inappropriate matches. In the case of

a rotating field, the true trajectory is not the smoothest of all possible, which

is another source of mistakes. (B) Tracking a rotating flow field when

multiple perturbations are applied. The rate of appearance between

successive frames was 10% of the number of existing particles, whereas

10% of existing particles were deleted between each pair of frames. The

amplitude of random positional fluctuations in each frame was 2 pixels in

both the horizontal and the vertical image direction. The width of the filter

kernel was set to 20 pixels (cf. text for further parameters). Continuous thin

arrows represent the recovered matches, whereas thick arrows represent the

filtered vector field. The average recovered rotation angle was 2.58 6 0.38,

only slightly underestimating the nominal rotation angle of 38. (C) Tracking

a standard test data set for particle tracking methods (Veenman et al., 2001).

The few mismatches correspond to trajectories, which are smoother than the

correct ones (i.e., linked points are in almost perfect alignment). No intensity

information was available for this data set.
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the effects of speckle appearance, speckle disappearance,

speckle intensity variation, and positional fluctuations are

simultaneously present (Fig. 3 B). As can be recognized in

Fig. 3 B, the global flow is recovered accurately. Moreover,

the average rotation angle estimated from the recovered flow

was equal to 2.58 6 0.38, underestimating the nominal value

of 38 only slightly.

Comparative evaluation

The goal of this article is not to systematically compare our

approach with other tracking algorithms, but to apply it to

solve important biological problems. However, for a very

partial, comparative evaluation of our software, we have

tested it on a data set accepted as a benchmark in the

computer vision community (Veenman et al., 2001). The

centroid coordinates of these particles were provided with

the data set, and no other information than that was exploited

to recover the trajectories. We have tracked the particles

between the first three frames of the sequence, as shown in

Fig. 3 C.
Although there are algorithms reported to be able to track

this data without a single mistake, most of them experience

difficulties with it (Veenman et al., 2001). Moreover, our

algorithm can handle data sets containing thousands of

particles, whereas the rather complete panel of algorithms

tested by Veenman et al. (2001) tends to fail for more than

100 particles. Finally, except for the fact that we have

adjusted the parameter d (see paragraph ‘‘Generation of

Candidate Matches’’ in Algorithm section), we have used

our algorithm without tuning it for this particular data set. In

conclusion, our algorithm seems unique in being able to

match thousands of particles, and performs well compared to

other trackers on smaller problems.

F-actin flow recovery in a migrating newt lung
epithelial cell

A cross-linked meshwork of F-actin continuously polymer-

izes in a highly regulated manner at the edge of migrating

cells (Pollard et al., 2000). Polymerization is thought to

generate protrusive forces that push forth a lamellipodium

and begin the cell motility cycle (Mogilner and Oster, 1996).

Often, the growth of the polymerizing meshwork is

compensated by myosin-driven rearward pulling of the

meshwork, such that the F-actin cytoskeleton exhibits

a retrograde flow (Lin and Forscher, 1995). In addition to

myosin motor activity, the polymerization of the meshwork

itself may contribute to pushing forces against the leading

edge plasma membrane, promoting F-actin transport away

from the edge. Spatial perturbations of the balance between

polymerization and retrograde transport produce macro-

scopic shape changes in the cell boundary, which ultimately

lead to a forward or backward movement of the lamellipo-

dium. To understand the mechanics of cell migration, it

is therefore essential to quantify the spatial modulation of

F-actin retrograde flow and to relate it to molecular factors

controlling motor activity, polymer turnover, and meshwork

mechanical properties (Cramer, 1997; Lauffenburger and

Horwitz, 1996). The direct coupling of cell shape variations

and F-actin flow was demonstrated in Danuser and Old-

enbourg (2000), where spatial changes in a high-resolution

map of retrograde flow were accompanied by deformations

of the cell outline. However, for technical reasons, this study

was limited to a steady-state analysis. To understand how

F-actin flow contributes to cell migratory and morphogenic

responses, dynamic maps of the flow are required. As will be

demonstrated in the following, FSM appears to be the ideal

tool for this purpose.

Recovery of complete F-actin flow maps at the
front edge of a migrating cell

We have analyzed newt lung epithelial cells microinjected

with fluorescently labeled actin during their migratory

wound-healing response in tissue culture. In FSM images,

the actin meshwork appears in these cells as an approxi-

mately even distribution of fluorescent speckles with brighter

areas representing regions of high F-actin concentration

(Salmon et al., 2002). The data set we analyzed was

published in Fig. 3 A of Waterman-Storer et al. (2000b)

and the QuickTime movie is available as Supplementary

Material of this article (actinFlow.mov). Fig. 4 B shows the

filtered flow obtained by convolving matches from the first

seven frames of the FSM movie, overlaid on the first frame.

In the original publication, the analysis of F-actin flow was

restricted to visual inspection or kymographs, such as shown

in Fig. 4 A (see also Fig. 3 C of Waterman-Storer et al.,

2000b). With our new tool, we can now recover a complete

vector field representing the flow in every point of the

meshwork (Fig. 4 B). For the sake of visualization, in-

terpolated flow vectors are plotted on a grid (raster size 1

mm). Vector lengths are proportional to the flow velocity,

and their direction indicates the locally averaged direction of

speckle movements. Spatial filtering was performed with

a correlation length of 1.6 mm (see ‘‘Flow Recovery by

Filtering and Interpolation’’ in Algorithm section), chosen

in consideration of the shear modulus of a cross-linked

F-actin meshwork (Tseng and Wirtz, 2001). The overall pat-

tern of flow in our map corresponds closely to the visual

impression one gains from simply watching the movie.

However, there were regions that initially did not draw our

attention in the movie, such as the anterograde flow near

label A, or the flow converging toward a ‘‘pole’’ (label P).
The use of our algorithm uncovered such patterns, and, upon

closer visual inspection, it became apparent that in this case

computer vision outperformed the human eye not only in

terms of quantification and objectivity, but also in terms

of sensitivity in detection. This is a rather rare situation, as

computer vision algorithms typically lag behind human

1298 Vallotton et al.

Biophysical Journal 85(2) 1289–1306



vision in qualitative analyses of complex scenes. We spec-

ulate that the complexity inherent to the movements of the

actin cytoskeleton and associated FSM data obscures signif-

icant details to the human observer.

F-actin flow is organized in three distinct zones

Three distinct zones can easily be distinguished in the flow

map: i), the lamellipodium and lamellum at the cell edge,

where a prominent retrograde flow away from the cell edge is

present (label R in Fig. 4 B). ii), further down in the direction
of the cell body, a laminar convergence region, where most

speckles coalesce and subsequently move parallel to the cell

edge (label C in Fig. 4 B). As mentioned before, in the same

zone we also find poles where speckles converge toward one

point (label P in Fig. 4 B). iii), behind the convergence

region, a flow of smaller magnitude is on average directed

anterograde (toward the cell edge; label A in Fig. 4 B). The
vector map presented here illustrates strikingly the spatial

complexity of F-actin meshwork flow.

F-actin flow is dynamically modulated

By matching successive frames over time, complete movies

of the flow can be constructed, revealing not only spatial but

also interesting temporal modulations of F-actin flow. In

Fig. 5, we map the temporal evolution of the vector field

for a window in area C in Fig. 4 B where retrograde and

anterograde flows converge. The anterograde flow is seen

to turn its direction within a period as short as 40 s.

We speculate that this could be induced by very local

modulations of the myosin activity in this area. In summary,

our FSM analysis technique gives us access to a new body of

knowledge on F-actin dynamics. Such mapping can poten-

tially uncover how the dynamics are affected by upstream

molecular control factors, and how it correlates with

downstream responses such as cell migration events. This

new tool can be used to investigate and quantify F-actin

dynamic responses to perturbations in actin-related signaling

(Wittmann and Waterman-Storer, 2003), to drug application

(Ponti et al., 2003), and to spatially modulated cell adhesion

(Csucs et al., 2003).

Comparison with previous kymograph analyses

The presence of the three regions, as revealed by Fig. 4 B,
agrees well with a comparatively sparse kymograph analysis

of the flow in the same cell system (Salmon et al., 2002).

Although much less detailed and subject to potential

artifacts, kymographs generated at a few critical locations

were able to recover some of the main features of actin flow

characteristics. An example of such a kymograph is given in

Fig. 4 A. Image slices (the position of the slice is shown by

a yellow box in Fig. 4 B) of 5 pixels in width have been

copied from the first 50 frames of the movie and have been

pasted side by side to form the kymograph. Speckles that

move along the long axis of the box for a sufficiently long

period become visible as bright streaks in the kymograph.

Their slope is a measure of speckle speed, as indicated by

dashed lines in Fig. 4 A. The speeds estimated for the

lamellum and at the pole were equal to 0.456 0.05 mm/min,

and 0.0 6 0.05 mm/min, respectively. In good agreement,

our method delivered for the same locations and time period

speeds of 0.40 6 0.05 mm/min, and 0.02 6 0.05 mm/min,

FIGURE 4 F-actin speckle flow in a migrating

newt lung epithelial cell. (A) Kymograph analysis (cf.

text for more details) in the region indicated by

a narrow yellow box in panel B. The slopes of the

streaks in the kymograph permit the measurement of

the average speckle flow velocity along the vertical

axis of the box, as indicated by two dashed lines

highlighting streaks from two different populations of

speckles. In the lamellipodium and lamellum, a retro-

grade flow of 0.456 0.05 mm/min is measured (label

R). Farther away from the leading edge, the flow stops

and the horizontal streaks indicate a flow of 0.0 6

0.05 mm/min (label 0). (B) Flow analysis of the entire

cell front using the new single speckle tracker. The

presented flow field is averaged over seven frames

and spatially filtered with a correlation length of 1.6

mm. The flow vectors are interpolated on a grid with 1

mm side length, and overlaid on the first frame of the

movie. The flow appears to be organized in three

main regions: i), retrograde flow (R); ii), converging

(C) and poleward (P) flow; and iii), anterograde flow

(A). Velocity vectors with an origin on the axis of the

kymograph report a flow speed of 0.406 0.05 mm/min (R) with a transient slowdown to 0.026 0.05 mm/min, in agreement with the kymograph. Farther down

on this axis, an anterograde flow of 0.08 6 0.04 mm/min is measured, which is not detectable with kymograph analysis. Flow speeds in other areas of the

mapped field are higher than 0.40 mm/min, e.g., at the very front (see zoom-up). See text for further discussion of the flow map.
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respectively. As manifest in the kymograph of Fig. 4 A and

the flow map of Fig. 4 B, there is a difference in the flow

speed between the lamellipodium proximal to the leading

edge and the inner lamellum, suggesting that the flow in

these two areas is driven by distinct molecular mechanisms

(Waterman-Storer and Salmon, 1997;Waterman-Storer et al.,

2000b; Salmon et al., 2002). Our new vector map permits the

investigation of this apparent transition along the entire cell

edge. In some regions we indeed find this same behavior.

The lamellipodial speed (white ellipse and zoom-up in Fig.

4 B) can be up to two times faster than the fastest rates in

the lamellum (around R label in Fig. 4 B). In other regions

the difference is not as clear, indicating that there is substan-

tial variation of flow velocity along the edge. However, at

this point we are cautious not to draw too far-reaching

conclusions. Because the lamellipodium is very narrow in

these cells, i.e., in many locations less than the support area

of the convolution kernel, and naturally fluctuates in width

(Waterman-Storer and Salmon, 1997), our flow filtering

probably obscures some details of the velocity variations

along the edge and in the transition zone between

lamellipodium and lamellum. Here, adaptive adjustment of

the correlation lengths according to the underlying flow

structure will likely reveal further insights. There is evidence

that the retrograde actin flow in the lamellipodium is driven

solely by forces associated with actin polymerization

pushing on the leading edge plasma membrane, whereas

actin flow in the lamellum is myosin dependent (Waterman-

Storer and Salmon, 1997). Thus, a more precise spatial

mapping of the velocity vectors with less filtering may

uncover where exactly in the lamellipodium/lamellum

junction myosin motors begin to engage actin filaments,

a piece of information that cannot be obtained by any other

means.

Recovery of microtubule flux in a mitotic spindle

We have applied our single speckle tracker to an FSM movie

of microtubules in metaphase spindles with replicated

mitotic chromosomes assembled in meiotic Xenopus egg

extracts as described in Desai et al. (1998), Murray et al.

(1996), and Waterman-Storer et al. (1998). Previous studies

using fluorescence photoactivation (Desai et al., 1998; Sawin

and Mitchison, 1994) or fluorescent speckles to mark the

microtubule lattice have reported poleward flux rates of 2.0–

2.5 mm/min. Measurements by fluorescence photoactivation

are of low resolution and yield only averages over the whole

spindle. Previous FSM measurements were done by

kymograph analysis along the spindle axis and represent

only a narrow sample of speckle movements within the

spindle. In contrast, our particle tracking algorithm provides

detailed velocity information throughout an optical section

of the spindle as shown in Fig. 6. Fig. 6 A displays a cartoon

of the microtubule organization in a metaphase mitotic

spindle, which is formed from microtubules extending from

opposite spindle poles (SPs) with plus ends distal and minus

ends proximal to the associated pole. Kinetochore microtu-

bule bundles link sister chromosomes to the poles (pop-

ulation 1). Most spindle microtubules are non-kinetochore

microtubules, and interpolar spindle fibers are formed from

bundles of overlapping non-kinetochore microtubules ex-

tending from opposite poles (population 2). The links

between overlapping microtubules from opposite poles

include microtubule associated motors (Sharp et al., 2000),

rendering the spindle a complex motile scaffold (Wittmann

et al., 2001). Also indicated is the position of the metaphase

plate (MP) where chromosome pairs align under balanced

bipolar forces, before they start to segregate after inactivation

of the mitotic checkpoint (see Introduction).

Single speckle tracking reveals bipolar flux

In the metaphase arrangement, poleward microtubule flux

coupled to minus end depolymerization produces a bipolar

flow pattern with antiparallel components. When observed

by FSM, this gives rise to a complicated speckle trajectory

field with opposing velocity vectors (see QuickTime movie

spindleFlow.mov in Supplementary Material). Indeed, the

speckle flow recovered from the present FSM data is clearly

bipolar. Fig. 6 B shows the speckle matches found by the

tracker for 10 consecutive frames. For visual clarity, the

figure contains two speckle populations, as automatically

sorted by the flow filtering algorithm (see ‘‘Flow Recovery

by Filtering and Interpolation’’ in Algorithm section).

Speckle matches in blue point toward the upper pole, those

in red point toward the lower pole (see also cartoon in panel

A). The single speckle vector map indicates the ability of the

tracker to reconstruct antiparallel movements, which is

imperative in this case. This is confirmed in more detail by

the zoom-ups of insets B-I and B-II. Although this article

FIGURE 5 Dynamic changes in the actin cytoskeleton flow in the area C

of Fig. 4 B, where we suspect increased myosin concentration and activity

(cf. text for more details). Dynamic maps are obtained by filtering the

matches of every frame separately in the spatial domain only. The vector

fields are then concatenated into movies with the same temporal resolution

as the raw data.
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does not exploit speckle matches for lifetime analysis, the

data presentation draws one’s attention to a phenomenon

related to the lifetime: The lengths of connected speckle

matches increase, the closer the speckles are located to their

‘‘home pole.’’ This finding can easily be understood by

examination of the cartoon in Fig. 6 A. Non-kinetochore
microtubules undergo dynamic instability where their plus

ends rapidly switch between phases of growth and shrinkage.

Therefore, speckles generated by fluorophore incorporation

during growth will disappear again when the microtubule

end reaches their position during shrinkage. The more distant

speckles are from the microtubule plus end, the lower is the

probability of disappearing by disassembly, as reflected by

the more stable trajectories toward the pole. The short

trajectories of front speckles (see red trajectories in B-I,
respectively blue trajectories in B-II) of 2–3 frames suggest

rates of catastrophe (switch from growth to shrinkage) and

rescue (switch from shrinkage to growth) in the range of 20–

30 s, as expected for the dynamic instability of these

microtubules (Sawin and Mitchison, 1991). The tendency for

prolonged speckle trajectories toward the ‘‘home pole’’ is

further amplified by the kinetochore microtubules, which

only reach the MP, and in vertebrates are more stable than

the non-kinetochore microtubules that have free plus ends

(Zhai et al., 1995).

The velocity of microtubule flux is constant
along the mitotic axis

Fig. 6 C visualizes the filtered and grid-interpolated flow (1

mm2 raster) of the blue speckle population in Fig. 6 B. The
vectors were filtered over four frames and with a convolution

kernel with a width of 0.9 mm. The vector data are overlaid

on the first image of the movie. As indicated by the vector

map, the flow speed is almost constant along the pole-to-pole

axis, with an average equal to 2.56 0.2 mm/min. This value

agrees well with previous measurements in kymographs

(Mitchison and Salmon, 2001; Waterman-Storer et al.,

1998).

At the single speckle level, some tracks do not head

toward the poles but have a variable lateral component, or

can even transiently reverse their direction (data not shown).

Most of these events do not constitute matching mistakes,

as verified by manual tracking of some of the implicated

speckles. They only confirm that the spindle is a dynamic

structure subjected to forces of multiple origins, including

thermal bending fluctuations of microtubules. Analyzing the

statistical properties of the speckle micromovement should

allow us in the future to recover information about the nature

of the forces acting at this scale.

Histograms of the speckle number density along
the mitotic axis reveal the microtubule
organization and the spatial extension
of the spindle poles

Visual observation of FSM movies cannot provide quan-

titative answers to questions like: what is the density of

microtubules, as measured by the density of speckles moving

toward one pole or toward the opposite pole, as a function of

FIGURE 6 Tracking microtubule speckles in the mitotic spindle from

Xenopus leavis egg extracts. (A) Schematic diagram of the microtubule

organization in a metaphase spindle. Microtubules radiate from the two

spindle poles (SPs). At metaphase, kinetochore microtubules establish

bipolar attachment of the chromosomes via kinetochores (green dots; label

1), located in the metaphase plate (MP). Non-kinetochore fibers (label 2) are

formed from bundles of overlapping microtubules extending from opposite

poles and cross-linked by motors and other microtubule associated proteins.

For a microtubule system emanating from one SP, all speckles flow

poleward. Thus, in the bipolar system, the speckle flow direction is

a signature of which subsystem the associated microtubule belongs to. (B)
Speckle matches as recovered by the tracker aggregated over 10 frames. The

populations moving upward (blue) and downward (red) are separated

automatically before further filtering (see C). The number of matches and the

trajectory lengths are seen to increase as speckles approach their home pole.

Both effects are discussed in more detail in the text. (C) An FSM image of

metaphase spindle, overlaid by the filtered vector map of upward

microtubule flux (blue matches in B; side length of interpolation grid, 1

mm). The width of the Gaussian convolution kernel was 15 pixels (0.9 mm in

the object domain). Time averaging was performed over four frames. The

flow speed is almost constant across the whole spindle and amounts to 2.56

0.2 mm/min. (D) Number density of speckles moving toward the upper SP

(blue) and toward the lower SP (red) as a function of the position along the

mitotic axis. See text for a further interpretation of this data.
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the distance along the mitotic axis? In Fig. 6 D, the blue line
indicates the distribution of speckles moving upward,

whereas the red line shows the distribution of those moving

in the opposite direction. Note from Fig. 6 A that the flux

direction is a signature identifying which microtubule sub-

system a specific speckle belongs to. Therefore, Fig. 6 D
also displays the distribution of distances reached by mi-

crotubule plus ends emanating from one pole toward the

other pole. At metaphase, kinetochore microtubules radiat-

ing from one pole reach only to the midzone, where they

attach to chromosomes, whereas non-kinetochore micro-

tubules can extend further toward the other pole. Conse-

quently, one would expect for one microtubule subsystem

that the density of microtubules suddenly decreases when

going from one pole toward the other pole. In fact, this is

what our measurements indicate and the most significant

decrease occurs, as expected, at the position of the MP

(Fig. 6 D). The symmetry of decrease in the two subsystems

suggests that bipolar attachment of chromosomes by their

sister kinetochores to microtubules from opposite spindle

poles must be complete in the present image data. In

agreement with our expectation that only few non-kineto-

chore microtubules reach the opposite pole, the distributions

progressively decrease beyond the MP.

A second remarkable conclusion that can be drawn from

this distribution is the outreach of the pole region. After

a peak in the speckle number ;10 mm away from the MP

(arrowheads in Fig. 6 D), the number of speckles drops, on

average, monotonically toward the poles (see dashed lines).
This suggests that the distribution of minus ends where

microtubules depolymerize and thus, the pole itself, extends

over a large area.

Flux in non-kinetochore microtubules is higher
than in kinetochore microtubules

Based on histograms constructed from the set of all speckle

displacements, we have attempted to distinguish between

two microtubule populations with putatively different flux

behavior (Fig. 7). It could be expected that speckle velocities

are higher for non-kinetochore microtubules as compared to

kinetochore microtubules because the latter are linked to

chromosomes, thereby introducing mechanical tension

opposing the flux direction. To test this hypothesis, we

considered the speckle population moving toward the upper

spindle pole (represented by blue matches in Fig. 6 B). We

then reasoned that, within this population, speckles starting

their trajectory below the MP ought to belong to non-

kinetochore microtubules. In contrast, both kinetochore and

non-kinetochore microtubules are present between the MP

and the pole. If kinetochore microtubules flowed more

slowly than non-kinetochore microtubules, we would expect

the two histograms of the speckle speed for these halves be

shifted relative to one another. Indeed, a Kolmogoroff-

Smirnov test, performed on ;20,000 speckle matches over

25 frames of the movie, showed that non-kinetochore

microtubules flow faster (2.57 mm/min on average) than

the mixed population (2.46 mm/min) of non-kinetochore and

kinetochore microtubules (p-value: 0.0004).
We have repeated the analysis for speckles moving toward

the lower spindle pole (represented by red matches in

Fig. 6 B) and have obtained almost identical values: non-

kinetochore microtubules flow at 2.64 mm/min vs. 2.5 mm/

min for the mixed population.

Qualitative validation of tracking quality by
speckle signal subtraction

The fraction of signal exploited for tracking can be evaluated

by subtracting the signals of all speckles tracked from the

raw image data. Visual inspection of the residual movies

reveals in a qualitative sense how much of the speckle flow is

‘‘missed’’ by the software. Note that missed speckle flow

does not necessarily add a new component to the overall

flow field, but there is a certain probability that they could. On

the other hand, if the residual images do not exhibit perceiv-

able texture translocation, this is a sign that most of the

information present in the images is exploited to recover

the flow. Supplementary movies show a comparison for both

actin retrograde flow and microtubule flux between the

original time-lapse FSM images (see left half of the

supplementary movie) and the corresponding residual

FIGURE 7 Distinguishing kinetochore microtubules from non-kineto-

chore microtubules, based on differences in flux. The two histograms

represent the velocity distribution of the complete speckle population

moving upward (solid line) and of speckles located below the MP only

(dashed line), respectively. The second population therefore contains only

non-kinetochore microtubules. The two velocity distributions are very

similar, but the population containing only non-kinetochore microtubules

exhibits slightly higher velocities, making the distributions significantly

different, as judged by a Kolmogorov-Smirnov statistical test ( p-value ¼
0.0004).
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images (see right half of the supplementary movie).

Compared to the original data, little texture remains in the

speckle-subtracted movies, and in almost all areas the signal

is reduced to random flicker.

CONCLUSION

We have presented a new tool extending the possibilities of

FSM as a quantitative method for analyzing protein

dynamics in live cells. This tool was applied to two problems

of biological relevance: the analysis of the F-actin flow

pattern in a migrating cell and of the bidirectional mi-

crotubule poleward flux in a mitotic spindle. The exciting

biological conclusions drawn from these analyses should be

considered with care because in both cases they relied on the

processing of a single movie, and systematic experimental

controls supporting the findings are missing. Our intent with

these two biological applications was merely to illustrate the

performance of a new computational technique, which will

finally allow exploitation of the full power of FSM, as

proposed four years ago by Waterman-Storer et al. (1998).

Now that these techniques are available, we plan to process

extensive experimental data sets and to begin testing specific

hypotheses in cytoskeleton biology, some of which are

alluded to in the text. To do so, we face a few additional

technical challenges. Currently, the processing of one movie

of ;200 frames takes ;50 h on a high-end, newest gen-

eration personal computer. To deal with several data sets,

and to compare them quantitatively, we will have to mod-

ify our software for distributed computing in a computer

network. As indicated in the text, the analyses presented in

this article represent only the tip of the iceberg in terms of the

potential of this technique for FSM analysis.

The development of a novel tracking system
was necessary to cope with the specific
challenges of FSM

In both fields of computer vision and pattern recognition, the

problem of particle flow analysis is very actively studied for

innumerable applications (see Grant, 1997; Veenman et al.,

2001; and references therein). In the biophysics community,

the problem has drawn significant attention over the past 10

years as well (see Cheezum et al., 2001, for a comparative

study of single particle tracking methods in light microscopy

and its various applications to biophysical experiments).

This begs the question whether we could have used an

existing solution to solve our problem of speckle tracking in

FSM. We have chosen to develop our own framework

because on the one hand, we are not aware of an existing

tracker capable of recovering reliably thousands of speckle

trajectories simultaneously, and on the other hand because it

was critical to be able to fine-tune the program, for example

to exploit intensity information for the correspondence

search, which is typically neglected by other approaches. In

the case of FSM, exploiting intensity information is critical

as the average distance between the particles lies frequently

in the range of the particle displacements themselves, making

the correspondence search highly ambiguous. The solution to

this problem must, therefore, rely on additional informa-

tion cues.

The chosen particle tracking approach
outperforms alternative, pattern-based
tracking methods

Alternative tracking approaches, which are often exploited in

applications with image data containing a high density of

features, are pattern- or window-based methods (see Corpetti

et al., 2002; Haussecker and Fleet, 2001, for most recent

examples of tracking algorithms of this kind). This approach

is especially powerful when the features are weak in contrast

and proper feature extraction before tracking is difficult

(Danuser, 2000). The basic concept of window-based

tracking is to determine for a small image subwindow

(e.g., an area of 25 3 25 pixels) two transition models that

describe the positional and photometric evolution between

subsequent frames for each pixel forming the texture of the

window (Danuser, 2000). The parameters of the transition

models are then estimated by maximizing an objective

function, defining the similarity between the pattern in frame

k, and the transformed pattern in frame k1 1. This bears the

advantage that correspondences do not have to be sought

between thousands of features, but only a few parameters per

window have to be calculated for an optimal mapping of one

pattern upon another. Indeed, we and others (Perlman et al.,

2001) have attempted to apply such algorithms to FSM data

with the hope that a window-based tracking would allow us

to circumvent some of the difficulties mentioned for particle-

based methods. The result of such an analysis is shown in

Fig. 8 where a speckle flow field has been recovered for the

same movie as the one analyzed in Fig. 4. The weaknesses of

this kind of analysis are evident: The window-based tracker

fails; i), in areas where the number of speckles per window

changes dramatically (i.e., with strong polymer turnover);

and ii), where speckle trajectories are antiparallel, crisscross,

or converge. For the F-actin meshwork displayed in Fig. 8,

case i occurs at the leading edge (zone 1), where poly-

merization causes a constant appearance of new speckles.

Case ii occurs in areas of meshwork contraction, yielding

convergent (zone 2) or antiparallel (zone 3) speckle flow.

Similar problems were encountered when applying such

a tracker to the mitotic spindle data, where the antiparallel

flow of speckles made a reliable tracking of the microtubule

flux impossible (data not shown). We conclude from these

comparative experiments that only particle-based methods

can cope with the generally complex conditions of FSM data,

and that the resolution necessary for relevant biological

findings, e.g., the examination of cytoskeleton contraction,

requires tracking at the level of single speckles.
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Single speckle tracking can reveal local polymer
events and delivers extensive data for statistical
analysis of cytoskeletal events

A key feature of the solution we have presented in this

work is that the displacements of individual speckles are

accessible. This allowed us to validate the software on real

data by visual inspection and hand tracking, and to perform

statistical analyses at the single speckle level. In particular,

we plan to extend the current framework to compute full

trajectories to combine it with the kinetic analysis by Ponti

et al. (2003). We will then be able to quantify depolymer-

ization and polymerization activities that occur concurrently

with flow, a project impossible to envision with a window-

based tracking.

Another interesting element of a single speckle tracker is

that we can determine whether a speckle population is

homogeneous or heterogeneous for a property like velocity.

In that way, the heterogeneity of the corresponding cyto-

skeletal structures becomes accessible. In general, with this

novel tracker, each speckle can now be considered a local re-

porter of polymer movement.

The new speckle tracker overcomes the
limitations of previous kymograph analyses

The method used until now to extract some quantitative

flow information from FSM data was the kymograph analy-

sis (Kapoor and Mitchison, 2001; Salmon et al., 2002;

Waterman-Storer, 2002; Waterman-Storer et al., 1998). In

a kymograph, successive images of the same thin rectangular

image region, chosen with its long axis parallel to the

average flow direction, are pasted side by side. The result of

this operation displays diagonal bright streaks, whose slopes

relate to the speed of the speckle flow (see Fig. 4 A). The
nature of this relationship, however, is unambiguous only for

simple cases. The component of the velocity perpendicular

to the slice causes speckles to appear and disappear from

the kymograph and also leads to underestimated speckle

velocities. Nevertheless, when the amplitude of Brownian

motion is limited and when the flow is coherent along the

kymograph axis, such analysis and our tracking approach

deliver identical results (see Fig. 4 A). Kymographs have

further limits, however. For example, a kymograph cannot

distinguish between a laminar convergence region and a pole,

although the real nature of these flows is immediately visible

in the complete mapping as shown in Fig. 4 B (C and P
regions, respectively).
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