Time integrating optical signal processing

P. Kellman

ESL, Incorporated
495 Java Drive
Sunnyvale, California 94086

Abstract. Time integrating acousto-optic processors realize flexible, multipurpose complex signal processing architectures based on correlation algorithms. One- and two-dimensional techniques are presented including examples of spectral analysis and ambiguity function processing. Noncoherent optical processor implementation using interferometric detection with electronic reference is described and experimental results are given.

Keywords: acousto-optics, signal processing, correlators, spectral analysis, ambiguity function, triple-product processor, chirp algorithm.

Optical Engineering 19(3), 370-375 (May/June 1980)

I. INTRODUCTION

Optical techniques for linear signal processing lend themselves naturally to large time-bandwidth product operations due to the high degree of parallelism found in optical systems. Parallel optical signal processing has traditionally exploited spatial integration" to realize functions such as filtering and spectral analysis. In this manner, the potential time-bandwidth product, or number of cycles integrated, is proportional to the large number of degrees of freedom of the optical system, though a practical limitation is imposed by input and output devices such as light modulators and detectors.

Integration in time rather than space may be used to realize extremely large time-bandwidth products. Time integrating techniques have recently been generalized for one- and two-dimensional complex signal processing. Interest in time integrating techniques has resulted due to the attractive device technology as well as flexibility of time integrating algorithms. An important consequence of time integrating techniques is the ability to operate on signals with very large time-bandwidth product without having to store the entire time history as a spatial record. Therefore, an important class of two-dimensional and multichannel processing algorithms may be performed without requiring two-dimensional spatial light modulators. Acousto-optic devices and charge coupled image sensors are particularly well suited for time integrating processor implementation. Further, these signal processing techniques may be realized with either coherent or noncoherent optical systems.

The optical signal processing architectures discussed in this paper are based on acousto-optic or other traveling wave input modulation devices. Time integrating optical correlators were first demonstrated using translating optical masks" and scanning detector systems. In signal recording applications, time integrating techniques have been used to compensate Doppler shift. Time integrating correlator implementation has been demonstrated using acousto-electric surface wave technology. Acousto-optic implementations of one-dimensional time integrating correlation and spectral analysis have first been introduced by Montgomery, Sprague, and Koliopoulos. Two-dimensional time integrating techniques were introduced by Kellman and Turpin. In this paper, time integrating acousto-optic signal processing is reviewed, and the concept of interferometric detection with electronic reference is described. These techniques are generalized for complex computation, and examples of spectral analysis and ambiguity function processing are given.

This paper is organized as follows. Time integrating correlation is reviewed in Section 2 and interferometric implementation with electronic reference is described. Time integrating spectral analysis by means of the chirp algorithm is described in Section 3, and the experimental result of a noncoherent optical implementation is given. Two-dimensional processing is presented in Section 4 and examples of ambiguity function processing and spectral analysis are given in Sections 5 and 6.

II. TIME INTEGRATING CORRELATION

The one-dimensional time integrating correlator is reviewed. Consider the optical realization shown conceptually in Figure 1. The light source is temporally modulated by a signal, s₁(t), to produce an output intensity I₁(t), which illuminates an acoustic delay line light modulator. A second signal, s₂(t), is introduced into the acoustic cell, which spatially modulates the source intensity by an amount denoted by I₂(t) = I₁(t) - I₁(t - x/v), where x is the spatial dimension and v is the acoustic velocity. The acoustic signal is chliren imaged onto a linear photodiode array; the intensity distribution in the image plane is given by the product I₁(t)I₂(t - x/v). Distinction between coherent and noncoherent optical system implementation and interferometric versus noninterferometric detection will be described.

The charge integration, directly proportional to exposure, is performed by detectors at discrete positions, x. The resultant output voltage at the 1st detector element is therefore:

\[
R₁(t; t) = \int_{T} I₁(t)I₂(t - x₁/v)dt
\]

where \(t₁ = x₁/v \), and \(T \), the integration time of the detector, is set by the timing of the charge transfer readout register. This is the desired correlation, where I₁ and I₂ are directly related to the input signals s₁ and s₂. Several modulation/detection schemes may be employed in order to achieve a linear relationship.

The range of possible delay between input signals is limited by
the acoustic delay length, and the integration time is set by the
detector readout period. The correlator time-bandwidth product,
BT, may therefore be larger than the delay line time-bandwidth
product, Br, since the integration time period may be longer
than the acoustic delay. In spatial integrating correlators, the
integration period is determined by the acoustic delay; in configurations
employing fixed reference masks, the range of relative delay is
unlimited, however, in correlators with acoustic reference, the
range is limited to the acoustic delay. Long integration and flexibil-
ity of variable integration are achieved with the time integrating
approach.

The achievable processing gain is limited by the correlator
dynamic range which is determined by the detector dynamic range
and the signal-to-bias ratio. The signal-to-bias ratio depends on the
light intensity modulation depth. Detector dynamic range is limited
by saturation and is defined as the ratio of saturation level to rms
noise. The processing gain and dynamic range can be extended,
however, by post-detection digital integration.

In all approaches to time integrating optical correlation, the goal
is to achieve a term in the detected light intensity that is propor-
tional to the product of the input signals. Acousto-optic devices
modulate optical phase, thus are basically nonlinear modulators of
electric field amplitude or intensity. However, linear electric field
modulation is approximated at low diffraction efficiency (depth of
phase modulation). Linear intensity modulation is approximated
by operation with an optical bias at high diffraction efficiency (π/4
phase shift) and a small signal modulation depth. This latter tech-
nique has been exploited by Sprague and Koliopoulos. Inter-
ferometric detection may be used when acousto-optic modulation of
electric field is linear. In one implementation, a coherent optical
reference beam is used for interferometric detection. Another
implementation is described that uses an electronic reference to realize
interferometric detection with either coherent or noncoherent light.
This approach is realized by adding a reference oscillator signal to
the acoustic modulation, rather than using a reference beam with
separate optical path. The basic difference between the coherent
and noncoherent implementation is the spatial and temporal diver-
sity of the illumination. Tolerance to angular and wavelength
dispersion is determined by the acoustic diffraction and the Bragg
condition. The magnitude transfer function, MTF, is related to the
illumination and acoustic field by convolution of their angular
spectra.

In the interferometric schemes, it is assumed that acousto-optic
modulation of the electric field is linearly proportional to the drive
voltage, and that the imaging optics pass only the first diffraction
order. This condition is approximated at low diffraction efficiency.
Third order intermodulation may be in band and may contribute to
the output. In special cases, these terms time-integrate to zero.

The implementation described uses an internally modulated
diode source as shown in Figure 1. A reference oscillator signal is
added to the acousto-optic deflector input with a frequency that is
offset from the signal modulation; in addition the illumination
source must be modulated on a carrier with equal frequency offset.
Both single and double sideband modulation are analyzed.

The image intensity distribution, I, is given by the product of the
source modulation, I_0, and acousto-optic modulation denoted by
I_1 = |E|^2 where E is the complex electric field modulation.

\[I(t,x) = I_0(t)|E|^2 \] \hspace{1cm} (2)

For double sideband modulation

\[I_1(t) = A_1[1 + \nu I(t) \cos(2\pi f_d t)] \]

\[E(t) = A_1^{\nu \pi}[1 + \nu I(t) \cos(2\pi f_d t)] e^{i2\pi f_d t} \]

\[I(t) = E(t)^2 \]

\[= A_1[1 + 2m I(t) + 2\nu I(t) \cos(2\pi f_d t)] \] \hspace{1cm} (3)

where \(f_d \) is the frequency difference between the reference
detector at \(f_c \) and the double sideband suppressed carrier modulation
at \(f_c + f_0 \). The \(+1 \) diffraction order is passed by the imaging
optics. \(A_1 \) and \(A_2 \) correspond to light intensity and diffraction
efficiency respectively; \(m_1 \) and \(m_2 \) are constants that determine the
modulation depth. It is assumed that signals \(s_1 \) and \(s_2 \) are
bandlimited to a bandwidth \(B \) (i.e., \(|S(f)| = 0, |f| > B \), and have
unit average power. The spectrum of the input modulation is
shown in Figure 2. The device bandwidth is \(f_0 + B \).

For \(f_0 > 3B \) several cross terms effectively integrate to zero and
the output becomes approximately:

\[R(t) = A_1 A_2 \left[T + 2m I \int \left[s_1(t) - r(t) \right] \right] \]

\[+ 2m I \cos(2\pi f_d t) \int \left[s_1(t) s_2(t - r) \right] \] \hspace{1cm} (4)

where \(r = x/v \). The first two terms are bias and the last term is the
desired correlation on a spatial carrier, \(f_0 \). The bias terms may be
eliminated through filtering. The ratio of signal-to-bias for maxi-
mum correlation is given by \(\beta = 2m_1 m_2 B \).

For single sideband (SSB) modulation the bandwidth requirement
is cut in half. The spectrum of the input modulation is shown in
Figure 3. For \(f_0 > 3B \) the output correlation is approximately:

\[R(t) = A_1 A_2 \left[T + 2m \int \left[s_1(t) - r(t) \right] + s_2(t - r) \right] \]

\[+ 2m I \cos(2\pi f_d t) \int \left[s_1(t) s_2(t - r) \right] \] \hspace{1cm} (5)

where \(R_{12}(r) \) is the desired correlation and \(\tilde{R}_{12} \) is the Hilbert
transform of \(R_{12} \). The desired correlation \(R_{12} \) may be
synchronously detected.

Complex correlation using real computation is described in the
following. In general, calculation of complex multiplication or cor-
relation requires four real operations. Alternatively, frequency
translation may be realized to simulate correlation with a
single real correlator at the expense of bandwidth. The time inte-

Figure 2. Spectrum of (a) input signal, (b) diode source modulation, and
(c) acousto-optic deflector modulation for DSB example.

Figure 3. Spectrum of (a) diode source modulation, and (b) acousto-
optic deflector modulation for SSB example.

OPTICAL ENGINEERING / May/June 1980 / Vol. 19 No. 3 / 371
grating spectrum analyzer described in the next section is an example of complex correlation by this method. Further advantage of correlation at a carrier frequency is the ability to filter the desired correlation from additional bias terms. The expressions for complex correlation are derived in the following.

Define the correlation between complex signals \(x(t) \) and \(y(t) \) by:

\[
R_{xy}(\tau) = \langle x(t)y^*(t-\tau) \rangle
\]

(6)

where

\[
x(t) = x_R(t) + i x_i(t)
\]
\[
y(t) = y_R(t) + i y_i(t)
\]

and \(\langle \cdot \rangle \) denotes ensemble average.

\[
\begin{align*}
\text{Re}[R_{xy}(\tau)] &= \langle x_R(t)y_R(t-\tau) \rangle + \langle x_i(t)y_i(t-\tau) \rangle \\
\text{Im}[R_{xy}(\tau)] &= -\langle x_R(t)y_i(t-\tau) \rangle + \langle x_i(t)y_R(t-\tau) \rangle .
\end{align*}
\]

(7)

Consider the real correlation between \(x_d(t) \) and \(y_d(t) \),

\[
R_{x_d y_d}(\tau) = \langle x_d(t)y_d^*(t-\tau) \rangle
\]

\[
x_d(t) = \text{Re}\{x(t)e^{i2\pi f_0 t}\}
\]
\[
y_d(t) = \text{Re}\{y(t)e^{i2\pi f_0 t}\}
\]

where \(x(t) \) and \(y(t) \) are bandlimited with bandwidth \(B \), and \(f_0 > B \).

\[
R_{x_d y_d}(\tau) = \frac{1}{2} \text{Re}\{R_{xy}(\tau)e^{i2\pi f_0 \tau}\}
\]

(9)

Cross products at the sum frequency \(2f_0 \) average to zero for \(f_0 > B \). Thus, the correlation between \(x_d \) and \(y_d \) is at a carrier frequency \(f_0 \), with carrier phase modulated by the phase of \(R_{xy} \), and envelope equal to the magnitude of \(R_{xy} \). The real and imaginary parts of \(R_{xy}(\tau) \) may be derived from \(R_{x_d y_d}(\tau) \) by synchronous detection (in quadrature).

III. TIME INTEGRATING SPECTRAL ANALYSIS

An approach to real time optical spectral analysis of electrical signals that uses a time integrating, rather than spatial integrating, version of the chirp z-transform, is described. The large time-bandwidth correlation is accomplished by means of the correlator described in the previous section. A time integrating architecture for correlation and spectral analysis, using oppositely traveling acoustic waves, has been described by Montgomery.\(^4\) For time integrating realizations, frequency resolution is determined by the detector integration period, rather than the acoustic delay length, therefore, higher resolution can be achieved than by spatial integration. Variable resolution is attainable through variable time integration. Use of intensity modulation leads to detection of the magnitude spectrum rather than the power spectrum which yields a considerable increase in dynamic range. This approach to spectral analysis achieves a flexibility not readily achieved by coherent optical spatial methods. The chirp algorithm,\(^5\)\(^6\) is reviewed, and the real implementation is discussed.

The Fourier transform integral

\[
S(f) = \int s(t)e^{-i2\pi ft} dt
\]

may be rewritten as

\[
S(f) = e^{-i\pi f^2} \int s(t)e^{-i2\pi ft} e^{i2\pi f_0^2 t^2} dt ,
\]

(11)

by expressing \(f \) as \(\frac{1}{2} [f^2 + f^2 - (f-f)^2] \). The complex realization is shown in Figure 4. The post-phase weighting may be ignored if only the magnitude or power spectrum is required. This realization converts the integral transform to time invariant filtering of a preweighted signal, followed by post-weighting.

The chirp algorithm may be realized with a single real correlation by translating the real chirp to a carrier frequency, \(f_0 \), greater than the signal analysis bandwidth, \(B \). The desired difference frequency is translated to baseband, and the sum frequency is an output-band chirp that integrates to zero. The product of the difference frequency, which is a linear function of delay, and the input signal, is integrated, producing the Fourier transform. The magnitude spectrum corresponds to the detected envelope. The phase modulates the spatial carrier and may be detected as well, resulting in a complex output.

Frequency resolution of this spectrum analyzer is inversely proportional to the detector integration time, \(T \). The resolution is not set by the acoustic time delay which typically limits the use of acousto-optical processing to wideband analysis. A wide range of integration times are easily realized (0.1-1000 msec) using self-scanned arrays of moderate size (e.g., 1024). Integration time periods can be extended by means of electronic accumulation.

The delay line length, \(\tau \), and the number of detectors, \(N \), set the delay, \(\Delta \tau \), between detector elements in the image plane. This determines the chirp bandwidth \(B' \). The required resolution or integration period fixes the chirp rate, \(\alpha \), (see Figure 5). The spatial bandwidth equals the chirp bandwidth, \(B' \), plus carrier frequency, \(f_0 \). Let \(k \) be the number of samples (detectors) per cycle of the highest frequency (\(k = 2 \) for Nyquist sampling), and define \(k' \) as the ratio of frequency offset to chirp bandwidth, \(f_0/2B' \). The above relationships may be written as:

\[
N = k(f_0 + B')\tau
\]
\[
\alpha = B'/T = B/\tau
\]
\[
k' = f_0/B' \geq 1 .
\]

(12)

The time-bandwidth product is, therefore

\[
BT = N/k(1+k') < N/4 .
\]

(13)
The dynamic range is limited by detection noise. If there are M distinguishable levels in the output voltage between the noise floor and the photo element saturation value, and if \(\beta \) is the maximum ratio of signal-to-bias, then the dynamic range in dB is given by 20 \(\log_{10} M \beta/(1+\beta) \), since incident exposure is directly proportional to spectral magnitude. This results in a considerable increase in dynamic range as compared to coherent optical power spectral analysis in which incident exposure is related to spectral power density and the dynamic range is given by 10 \(\log_{10} M \).

An experimental breadboard was constructed using a non-coherent implementation with a light emitting diode source. The modulation was double sideband and the chirps had octave bandwidth (\(k' = 1 \)). The correlator output for a sine wave input is shown in Figure 6. In this photograph the envelope is observed since the exposure covers multiple integration periods in which the signal phase is changing. Parameters of this example were: \(N = 1000 \), \(\tau = 40 \) \(\mu \)sec, \(B = 2.5 \) MHz, \(T = 2 \) msec, \(BT = 100 \), \(k = 5 \), \(k' = 1 \). The signal-to-bias ratio, \(\beta \), was 20% and the detector dynamic range (peak to rms) was \(M = 1000 \). The dynamic range observed was 40 dB (\(\beta M/2 \)) since the bias was set at \(M/2 \) rather than optimized at \(M/(1+\beta) \). The dynamic range is 3 dB greater using SSB input modulation.

IV. TWO-DIMENSIONAL PROCESSING

Two-dimensional integral transforms, for which the kernel is decomposable in the proper way, may be implemented by time integrating optical processing. Two important examples are ambiguity plane processing and spectral analysis.

Consider the optical realization shown conceptually in Figure 7. The optical train has a modulated illumination source, two acoustic delay line light modulators, and a matrix array of detectors. This configuration may be employed for several functions, determined by input signal and reference waveforms. It is assumed throughout this discussion that two-dimensional processing is applied to either very long one-dimensional signals or to two-dimensional signals (e.g., imagery) that are in raster format. In this way, the input will be a function of one variable, \(t \); the output \(R(t_1, t_2) \) is a function of two variables.

The light diffracted by the first acousto-optic modulator A01, is diffracted by the second, A02, in an orthogonal direction. Both acoustic signals are imaged on the detector plane. The desired image plane intensity distribution has a term proportional to the product of acoustic signals, \(s_1(t-t_1)S_2(t-t_2) \), where \(t_1 = x/v \) and \(t_2 = y/v \) are time variables. The resultant detected output voltage is proportional to the integrated charge as in the previously described

\[
R(t_1, t_2) = \int_{T} s_1(t-s_1)S_2(t-s_2)dt.
\]

In this configuration, all signals are real. In order to perform complex computation, similar considerations apply that were given for one-dimensional processing.

Hybrid realizations that use a combination of spatial and time integration can be used to implement a variety of other operations. An example of spectral analysis utilizing spatial integration for coarse resolution and time integration for fine resolution is described by Bader.\(^9\)

The two-dimensional time integrating optical processor may be implemented with several modulation/detection schemes. A description of a coherent optical implementation using an interferometric optical reference has been given by Turpin.\(^9\) Noncoherent implementation using an intensity modulated light emitting diode offers immunity to noise suffered in coherent imaging. Noncoherent optical implementation using a reference oscillator for interferometric detection may be used to realize complex operation. Input modulation must be designed such that undesired terms are out of band.

The next examples demonstrate the strength of two-dimensional time integrating processors.

V. AMBIGUITY FUNCTION PROCESSING

Ambiguity function processing is important in resolutions of delay and Doppler uncertainty. In application to radar signal processing or external signal parameter measurement, delay and Doppler are often time-varying. An ambiguity function snapshot is therefore desirable. A noncoherent optical parallel processing implementation for achieving such a snapshot is given in this section.

This example utilizes the 2-D optical system shown in Figure 7 which was generalized in the last section. The cross ambiguity function between complex signals \(x(t) \) and \(y(t) \) may be defined as

\[
A_{XY}(r, f) = \int_{0}^{T} x(t)y^{*}(t-r)e^{-j2\pi ft}dt
\]

where the variables \(r \) and \(f \) may be interpreted as delay and Doppler, respectively. A real implementation of the complex cross-ambiguity function is described that uses the architecture of Section 4. The spectral analysis operation is performed using the chip algorithm. Complex correlation was derived in Section 2 and is easily extended to two-dimensional computation.

Define the complex input signals \(s_1(t), s_2(t), \) and \(s_3(t) \) by

\[
s_0(t) = x(t)e^{-j2\pi ft}.
\]
\[s(t) = y^*(t) \]
\[s_{\delta}(t) = e^{i\omega_{\delta} t} \quad (16) \]

and consider the interferometric implementations of Section 2 with electronic reference. In the case of complex inputs, the intensity modulation is given by

\[I(t) = \mathcal{A}_1 \left[1 + 2\nu \mathcal{R}(s_{\delta}(t)e^{i\phi(t)}) \right] \]
\[I_{\delta}(t) = \mathcal{A}_1 \left[1 + 2\nu \mathcal{R}(s_{\delta}(t)e^{i\phi(t)}) \right] \]
\[I_{\delta}(t) = \mathcal{A}_1 \left[1 + 2\nu \mathcal{R}(s_{\delta}(t)e^{i\phi(t)}) \right] \quad (17) \]

where double sideband modulation is assumed. The integrated intensity, \(R(\tau_1, \tau_2) \),

\[R(\tau_1, \tau_2) = \int_0^T I(t)I_\delta(t-\tau_1)I_\delta(t-\tau_2)dt \quad (18) \]

contains the desired ambiguity function term,

\[\mathcal{R}\{ A_{XY}(\tau, \omega \tau) e^{i2\pi \phi_0(t-\tau_1) + a \omega \tau \omega \tau} \} \quad (19) \]

which is at a carrier frequency and may be filtered from other cross-product terms. The quadratic phase term may be cancelled through post-detection weighting. The variables \(\tau_1 \) and \(\tau_2 \) correspond to delay and Doppler respectively. The Doppler resolution is commensurate with the integration time; the analysis bandwidth is determined by Eq. (13). A coarse resolution may be maintained during a signal acquisition period, and a higher resolution zoom can be achieved by longer integration. Multiple correlation peaks or targets can be processed simultaneously since a linear system implementation is used.

Ambiguity function processing was demonstrated using the noncoherent optical implementation shown in Figure 7. Devices included a Hitachi HLP-20 light emitting diode, Fairchild SL62926 charge coupled device image sensor, and Isomet acousto-optic devices. The diode has a 300 MHz 3 dB bandwidth and was biased at an average optical power of approximately 10 mW. The image sensor has 380 x 488 elements and was operated with an integration period of 33.34 msec. The acousto-optic devices have a 30 MHz 1 dB bandwidth and 50 usec delay. Chirp waveforms of very large time-bandwidth product \((BT \approx 10^8)\) were synthesized digitally. The delay range was limited to 36 x 27 usec (4.3 aspect ratio) to increase the signal bandwidth. The image plane sampling was, therefore, 380 x 360 usec \(\approx 10.6 \) MHz in one delay dimension and 488 x 27 usec \(\approx 18.1 \) MHz in the other dimension. The overall system frequency response (MTF) was approximately 3 dB lower than the Nyquist limit (2 samples per cycle) 5 and 9 MHz, respectively. An example ambiguity function of a short pseudo-random code is shown in Figure 8. The Doppler range was 1-3.5 kHz determined by the chirp rate. The code repetition period was 6.2 usec (31 length, 5 MHz rate), therefore, 4 correlation peaks are evident in the ambiguity function; the Doppler was 2 kHz. The time bandwidth product was 5 MHz x 33.34 msec = 166,700. No post-detection processing has been applied to the output video. A signal dependent bias variation, proportional to the pairwise cross-correlations between inputs, has not been filtered. The image has several blemishes due to the CCD camera. The sensor dynamic range is approximately 60 dB, and the maximum signal-to-bias ratio was 25%; the resultant input signal dynamic range was, therefore, 48 dB.

VI. SPECTRAL ANALYSIS

A noncoherent optical time integrating approach to two-dimensional complex spectral analysis is described. This method is an extension of the technique described for one-dimensional analysis. Very large time-bandwidth (greater than 10^9) spectral analysis of electrical signals can be performed using this time domain approach, without requiring storage of the signal. Spectral analysis of raster scanned video imagery can be performed as well.

The optical system (Figure 7) described in the last sections is used in this example as well. The algorithm is implemented with three reference chirp waveforms. The source is modulated with the input signal, which is premultiplied by a chirp, and the other chirps modulate A01 and A02. The chirp rates are chosen such that the product of the three chirps result in a temporal sine wave, with frequency that is varying from pixel to pixel on the detector array. Each detector element integrates the product of this sine wave times the input signal, and, in this fashion, produces the spectrum. The frequency difference between output lines in one dimension is taken to be N times the frequency difference between lines in the other dimension, where N is the number of detectors per line. For a square array, the number of spectral samples is proportional to N^2. The technology is currently limited by detector array size, and detector readout rate.

A two-dimensional chirp algorithm with three complex reference chirps is described next. The real implementation is performed with frequency offset chirps, similar to the previous examples. Define the transform (optical processor output) by

\[R(\tau_1, \tau_2) = \int_{-NT/2}^{NT/2} s(t)a(t)b(t-\tau_1)c(t-\tau_2)dt \quad (20) \]

where

\[a(t) = \sum_n e^{-i\pi((n+1)/N)\tau} \text{rect}\left(\frac{t-nT}{T}\right) \]
\[b(t) = e^{i\pi\tau^2/N} \text{rect}(t/NT) \]
\[c(t) = a(t) b(t) \quad (21) \]

Waveforms a(t) and c(t) are periodic chirps with period T and chirp rates \(\alpha \) and \(\alpha/(N-1)/N \), respectively. Waveform b(t) is a low rate chirp with period NT and rate \(\alpha/N \). The chirp rates are chosen such that a constant difference frequency, \(f = \alpha/T + (N-1)/N \), is generated by the product a(t)b(t-\tau_1)c(t-\tau_2). Frequency discontinuities occur during intervals NT < t < NT + \tau_2 due to the chirp transition traversing the acoustic delay aperture. This effectively reduces the integration time by the factor \((T-\tau_2)/T\). However, this may be completely compensated by increasing the chirp bandwidth. This effect is ignored in the following analysis, thus
\[a(t)b(t - r_1)c(t - r_2) = \]
\[\sum_n \left[2\tan T r_1 - 2\tan[(N-1)r_1]/N + \phi(r_1, r_2) \right] \]
\[\cdot \text{rect} \left(\frac{t-nT}{T} \right) \text{rect} \left(\frac{t}{NT} \right) \]
\[
(22)
\]
where
\[\phi(r_1, r_2) = \alpha \pi \left[\frac{r_1^2}{2} + \frac{(N-1)r_2^2}{2} \right] / N. \]

The spectral phase weighting, \(\phi(r_1, r_2) \), may be compensated post-detection. Equation (20) becomes
\[R(r_1, r_2) = e^{i\phi} \left[\text{sinc}(Tf) S \left[\frac{\alpha(r_1 + (N-1)r_2)}{N} \right] \right] \]
\[\cdot \sum_n \text{sinc} \left[NT(f + \alpha r_2 - n/T) \right] df. \]
\[
(23)
\]
As evidenced by the term \(S[\alpha(r_1 + (N-1)r_2)/N] \), the variables \(r_1 \) and \(r_2 \) may be interpreted as fine and coarse frequency, respectively. Integration over \(N \) chirp repetitions has created a comb sampling along the coarse frequency axis, with comb samples a function of the fine frequency axis. The spectral resolution is proportional to \(1/NT \) where \(NT \) is the total integration period.

VII. SUMMARY

Time integrating optical techniques for one- and two-dimensional complex signal processing have been described. Signal processing architectures utilizing actively generated reference waveforms such as chirps realize a wide range of algorithms and variable time integration allows further flexibility. Particularly attractive is the multipurpose capability of the time integrating optical processor, e.g., the same optical system is used for both spectral analysis and ambiguity function processing.

The technique of interferometric detection with electronic reference was described. In this implementation, a local oscillator is added to the acoustic modulation rather than a coherent optical reference added to the image. This method, therefore, permits noncoherent optical implementation, with the advantages of directly modulated diode light sources and increased immunity to artifacts of coherent optical imaging systems. The correlation is performed at a carrier, thereby enabling complex operation. Furthermore, the interferometric method circumvents the difficult requirement for acoustic modulation at a high diffraction efficiency bias point, that is necessary for linear operation in the noninterferometric technique.

The optical implementation, utilizing acousto-optic input and integrating image sensor output devices, creates a processor that is highly compatible with signal processing systems. Such implementation affords very large time-bandwidth product signal processing without the input signal storage requirement associated with spatial integrating methods. The requirement for high resolution, large dynamic range output image sensors becomes the key device limitation. Acousto-optic devices are available with time-bandwidth product much greater than the number of resolvable image samples.

The key attributes of time integrating techniques are summarized in the following: extremely large time-bandwidth correlations may be performed, independent of the device time-bandwidth product; a flexible, multipurpose processor is realized by use of actively generated reference waveforms and variable time integration: an important class of two-dimensional algorithms, including complex spectral analysis and ambiguity function processing, may be performed without having to store the entire time history as a spatial record; the system may be implemented with noncoherent diode sources, acousto-optic devices, and integrating image sensors.

ACKNOWLEDGMENT

The author acknowledges funding support by ESL, Incorporated under the Internal Research and Development program and by the Air Force Office of Scientific Research under contract F49620-78-C-0102.

REFERENCES